

INDEX

S1.	Content	Page
No.		No
1	About the Institute	3
2	Message of the Founder Chairman, Managing Director, and Principal	4
3	Institutional Vision & Mission	9
4	Core Values & Quality Policy	10
5	BOG Members	12
6	Academic Council	13
7	Internal Quality Assurance Cell (IQAC)	13
8	Administrative Offices	14
9	About the Department	15
10	Departmental Vision and Mission	16
11	Program educational objectives (PEOs)	16
12	Program Outcomes (POs)	17
13	Program-Specific Outcomes (PSOs)	18
14	Bloom's Taxonomy of Learning Domains	19
15	Revised Bloom's Taxonomy of Learning Domains	19

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

16	Mapping Out Learning Outcomes and Assessment Levels with Revised Bloom's Taxonomy	20
17	Establish the correlation between the PEOs and the Missions of the Department	21
18	Establish the correlation between the POs and the PEOs	21
19	Student-centric methods, such as experiential learning, participative learning, and problem-solving methodologies are used for enhancing learning experiences	22
20	Program Curriculum of B.Tech in ME	25
21	Syllabus with Course Outcomes	33
22	Code of Conducts of the Students	212

About the Institute

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex (formerly known as Dr. Sudhir Chandra Sur Degree Engineering College) was established under the auspices of JIS Foundation under Section 2(f) of the UGC Act, 1956.

This Institute, which was founded in 2009, is now well-known for its innovative and rigorous curriculum, which has produced experts in a variety of businesses and sectors in India and beyond.

The Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex, which has been known for its research culture and excellence in imparting Engineering, Science, and Management education for the past 12 years and is located near the Dum Dum Metro Railway Station and International Airport, is known for its research culture and excellence in imparting Engineering, Science, and Management education.

The institute is a virtual paradise of pristine environment and beautiful beauty, nestled in a rural setting of lush green fields. The beautiful avenue of trees and flowers on campus, aptly titled "Green Field," attest to the importance of ecology and the environment. The atmosphere on campus is ideal for academic endeavours.

SurTech has taken a worldwide approach to research and teaching, focusing on foreign viewpoints and knowledge. The Institute is dedicated to greatness and strives for it constantly, accepting nothing less than the best. Its faculty, which includes intellectual giants from India and internationally, is the Institute's bedrock.

SurTech is in the forefront of using cutting-edge technology and preparing students for a globalised economy while also promoting holistic learning, unbiased knowledge, industry-focused skills, ethics, a cosmopolitan outlook, and accountability for actions.

SurTech is establishing a national and international footprint through partnerships with world-class universities, study abroad programmes, and overseas internships and research.

It provides a comprehensive curriculum across a wide range of engineering degree programmes. These programmes provide students with a variety of academic options.

The Institute provides great educational opportunities for youth from all over the world at a reasonable cost. Through its social responsibility efforts, the Institute also provides unwavering support for community services.

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex

Department of Electrical Engineering

I always experienced a yearning to acknowledge my responsibilities and reciprocate by contributing to the growth and development of our society.

Years ago, when I visited my son's school, I perceived that the best way to advance society is by fostering education and it was at that moment that the dream and vision of JIS Group Educational Initiatives was conceived.

"Vision looks inward and becomes duty. Vision looks outward and becomes aspiration. Vision looks upward and becomes faith."

---Late Sardar Jodh Singh

Now, when this vision of duty, aspiration, and faith has become a reality, it is a proud moment for me and my team to see thousands of students pursuing higher education in the JIS Group of Colleges and equipping themselves to become industry-ready professionals for successful careers.

In this process, the Group intends to unite all dimensions of Education from Undergraduate to Post Graduate Programmes in Engineering and Technology, Computer Applications, Dental Science, Pharmacy, Hospitality, diverse streams of Management, and so on under the same umbrella to optimize the reach of Educational Initiatives comprehensively and collectively in every stratum and corner of society towards a better future.

Our educational Initiatives believes that creating an academic foundation for social, cultural, scientific, economic, and technological development in our Nation can mature into Global Interface by giving way to education exchange in the international territory as well.

Therefore, our focus is to achieve unparalleled excellence that will bring development to our society and mankind by optimizing their potential, thereby establishing the observation of the renowned Journalist Sydney J. Harris on the role the purpose of education which is to "turn mirrors into windows".

---Late Sardar Jodh Singh

Founder Chairman, JIS Group

Message of the Managing Director Sir

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

Department of Electrical Engineering

In its broadest meaning, education is any act or experience that shapes a person's mind, character, or physical abilities.

Technically, education is the deliberate transmission of society's acquired knowledge, skills, and values from generation to generation.

Thus, education is the basic fulcrum that drives societal growth.

The quality of education is clearly the priority in this era of globalization. Quality is not a single metric.

A good educational institution works to maintain and improve quality in all areas of operation.

I believe that a teacher may shape an educated and socially responsible human being by instilling two traits in students: curiosity and determination. Second, a teacher's noble life becomes a light for students when they establish strong values and put them into practice.

SurTech's objective to provide the best studying, teaching, and research possibilities for students and academics is to provide students with modern knowledge and strong values.

Our students find the thrill and rigor of new discoveries and develop skills of investigation, evaluation, and communication that will serve them well in their jobs and lives.

Students' creativity, teamwork, and international competition thrive. SurTech is committed to academic independence and cultural diversity to attract students and teachers.

At Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex (SurTech), we try to establish an environment that inspires personal and professional progress. Our efforts are focused on recognizing and understanding human talent and enthusiasm. SurTech is thus about "how we can best educate our students to confront the future's challenges".

With a 160-year tradition of academic achievement, scientific advancements, and high-tech innovation. I urge you to seize this fantastic chance and join us actively contributing to the globalization of our society.

With these remarks, I welcome everyone to SurTech and wish them every success on their new adventure with us.

---Sardar Taranjit Singh MD, JIS Group

Message of the Principal Sir

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex Engineering

IIS GROUP

I am honoured and greatly privileged to lead Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex (SurTech) and continue the ambitious strategy of addressing the challenges and opportunities of the future to benefit our communities more widely.

On the global platform, India has the responsibility of transforming itself into a developed nation with a strong ethical system- this; however, is a great challenge, as this can only be achieved through the youth of today who have the power of ideas, ambition, ability and most importantly passion.

I believe passionately that we are all born with tremendous capabilities, but unfortunately, we lose these as time goes by and ironically this can be directly attributed to the current system of education which stifles the creative senses rather than enhancing it.

Stepping into the JIS Group of Institutions is stepping into a brighter world of education and a knowledge hub. It is worthwhile to take advantage of the opportunity to see the difference and enjoy the "joy of learning."

Dr. Sudhir Chandra Sur Institute of Technology and Sports Complex (Formerly known as Dr. Sudhir Chandra Sur Degree Engineering College) is one of India's top educational institutions, providing high-quality education to students with the goal of becoming a world-class technical education and scientific research institution.

Since its inception in 2009, SurTech under the aegis of JIS Group has continued in subtle ways to pour fresh knowledge, human capital, and innovation into the engines of our society and nurturing a new generation of young professionals who are prepared to face the ever-changing social, economic, and technological landscape of our country to build a more inclusive and sustainable society on a national and international scale.

Over the last decade, the Institute has evolved into a strong blend of cutting-edge infrastructure and tightly connected human resources dedicated to providing professional education with a focus on creativity and innovation.

In a short span SurTech has become an ensemble of a multi-layered educational system which covers all aspects of diploma, under-graduate, and post-graduate education with smartly crafted and industry compliant course curricula using state-of-art infrastructure in a climate of possibility and transform lives and enhance communities.

The research activities of our faculty lead to an extraordinary enrichment of the experience of our students that is realized at both the graduate and undergraduate levels. The research training provided to our graduate students creates the next generation of scholars well-prepared to advance knowledge and transfer technology. The extension of research opportunities to an ever-increasing group of undergraduate students adds a dimension of experience to the undergraduate education that simply cannot be duplicated in the classroom.

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

Department of Electrical Engineering

SurTech heralds the latest and newest but never allows itself to be consumed by the intellectual fads of the day. Our graduates are smart, collaborative, and entrepreneurial. They use creative space of SurTech to actualize their potential. We are encouraging entrepreneurship and innovation on the campus.

We are facilitating campus recruitments and connecting our students to the world. The College strives for quality in training to instil a feeling of professional responsibility, social and cultural awareness, and to prepare students for leadership roles.

Campus life here emphasises the value of extracurricular activities in addition to academic learning, exposing students to a variety of fresh opportunities. All of this contributes to our student's development as a thoroughbred professional, well-suited to contribute to his chosen field while keeping an open mind to new ideas and concepts in industrial and technical breakthroughs through conducting Guest Lectures, Industrial Visits, Vocational Training (internships), student chapters of international professional groups, sponsored projects, and other means, students can meet with industry experts.

I can say with legitimate pride that the College has achieved far more than just the modest target set at the time of its inception by producing a trained human resource to serve the country in all walks of life and by contributing to the knowledge base.

I am glad to have this opportunity to serve as the Principal of this glorious institution. SurTech pledges to the state, the nation, and the world that our endeavours will benefit all citizens. I invite you to join and strengthen this venture.

---Prof. (Dr.) Saradindu Panda PhD-Tech (NIT, DGP), M. Tech (VLSI, J.U), BE (UIT, BU) Chair, IEEE CASS Kolkata Section IQAC Member of Swami Vivekananda College, RKM, Rahara MIEEE, MIASSE, MIEI, MIETE, MIAENG, MCSTA, MIRED, MIAE, MITEEA

Institutional Vision

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex

JIS GROUP

To be a top global technology institute that creates leaders & innovators and generates new knowledge for society & industry via transformative education.

Institutional Mission

Excellence in Education: Education of world-class quality, based on ethics and critical thinking, for the betterment of life.

Innovative Research: An innovation ecosystem to advance knowledge and tackle pressing issues.

Impactful People: Happy, accountable, compassionate, and effective employees and pupils.

Productivity Enhancement: Active engagement with national and international companies, as well as institutions, to increase productivity and economic development.

Service to Society: Providing knowledge and compassion to the region and the planet.

Integrity, Excellence, Accountability, Transparency, and Empathy are the abiding ideals established by the Institute.

Integrity & Honesty:

Research and teaching must take place in an atmosphere of academic freedom and honesty. In all its efforts, the Institute shall uphold the highest ethical standards.

Equality:

We are dedicated to establishing an institution and a community in which everyone is valued and judged based on their contributions and accomplishments rather than their gender, race, religion, physical abilities, sexual identity, or socioeconomic status. We shall raise awareness of individual and institutional racism, as well as fight to abolish it, through the activities of this institution.

Pursuit of Excellence:

The Institute is dedicated to excellence in all aspects of its operations and will strive for continuous improvement through internal and external reviews. Awards and honours will be given out by the Institute to recognize remarkable contributions.

Synergy through Teamwork:

To become synergistic and succeed, the institute concentrated on four key characteristics: a clear team purpose, effective communication, empowerment so that the team can lead itself, and ensuring that everyone is committed to the goal.

Accountability:

The Institute is dedicated to creating an atmosphere in which each member of the community recognizes and accepts responsibility for upholding and strengthening our principles.

Empathy:

The Institute's research and education programs will include an awareness of the conditions of our society's poorer members, as well as contributions to solving their problems.

Transparency:

The Institute will follow established procedures and rules, which will be communicated to all stakeholders. All valuable information about the Institute's operations will be made available.

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex (SurTech) is dedicated to academic excellence, providing high-quality technical education, training, and expertise in a variety of industries, and engineering programmes, enhancing students' inherent abilities, capabilities, and thought processes while also promoting their engineering and technological skills. We are committed to meeting the criteria and improving the efficacy of our quality management system on a continuous basis.

Quality Objectives

• To focus on the students' total development by increasing their technological and managerial skills, as well as their leadership talents, and to guarantee that they are well-rounded.

• To foster an environment that promotes effective teaching, active learning, and purposeful research for economic progress.

• Incorporating value-added programmes into the curriculum and increasing students' job chances.

• To review the effectiveness of the institute's programmes on a regular basis, considering the demands of the industry and other areas of employment, and responding positively to those needs.

• To expose students to the difficulties of the twenty-first century while also giving opportunities for them to think creatively and display entrepreneurship abilities to contribute effectively to the nation's growth.

• To provide research creation, consulting, testing, and customised training to satisfy the industry's specific demands, thereby encouraging students to pursue self-employment and entrepreneurship.

• To provide cutting-edge technological infrastructure and to inspire students to reach their full potential.

• To foster mutually beneficial collaboration with industry, other institutions, and organisations.

• To ensure that the Quality Management System is continually improved.

• Benchmarking the institution against top institutions on a regular basis to adopt best practises for quality improvement.

BOG Members

$\overline{\mathbb{S}}$

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

Department of Electrical Engineering

1	Prof. (Dr.) G.L. Datta (Educationist)	Chairman
2	The Regional Director, AICTE, Eastern Regional Office	Member
3	Mr. Partha Ghosh, State Govt. Nominee	Member
4	Prof. Narayan Banerjee, MAKAUT Nominee	Member
5	Mr. Taranjit Singh, Managing Trustee, JIS Foundation	Member
6	Mr. Haranjit Singh, Trustee Member, JIS Foundation	Member
7	Mr. Amrik Singh, Trustee Member, JIS Foundation	Member
8	Mr. Simarpreet Singh, Trustee Member, JIS Foundation	Member
9	Mr. Harjot Singh, Trustee Member, JIS Foundation	Member
10	Mr. Amanjot Singh, Trustee Member, JIS Foundation	Member
11	Mr. U. S. Mukherjee, Deputy Director, JIS Group	Member
12	Mr. Amit Srivastava, Managing Director, Hash Technology	Member
13	Dr. Asit Guha, Advisor , JIS Group (Educationist)	Member
14	Dr. Shefalika Ghosh Samaddar, Professor, Dept. of CSE, DSCSITSC	Member
15	Mr. Vivek Shaw, Asst. Prof of BSHU & In-charge, Exam Cell	Member
16	Dr. Saradindu Panda, Principal, DSCSITSC	Member Secretary

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex

JIS GROUP

Academic Council

1	Dr. Saradindu Panda, Principal	Admin	Chairman
	Three Nominees of MAKA	AUT, WB	
2	Prof. (Dr.) Manojit Mitra, Dept. of ECE, IIEST Shibpur	External	University Nominee
3	Prof.(Dr.) Subhasish Bhowmik, Dean R&D IIEST Shibpur	External	University Nominee
4	Prof.(Dr.) Amitava Chatterjee, Dept. of EE, JU	External	University Nominee
	Experts / Academicians from Outside the College	e Nominated by Governing	g Body
_		External	External Academic
5	Prof.(Dr.) Goutam Sutradhar, Director, NIT Manipur		Expert
		External	External Academic
0	Prof. (Dr.) Debashis De, Professor, MAKAUI	E tomal	Expert
7	Prof. (Dr.) Mita Neinuri, Professor, Jadaynur University	External	External Academic Expert
/	Mr. Atanu Chowdhury, Deputy General Manager- HR & IR	External	Expert
8	Electrosteel Castings LTD	Entornar	Industry Expert
	Mr. Turjasu Pyne, Senior Embedded Engineer, Silicon	External	
9	Validation for NXP		Industry Expert
	Dean (Academics), IQAC Coordinator	& Controller of Exam	
10	Mr. Vivek Shaw	BSH	Member Secretary
11	Ms. Dazy Rani, Assistant Registrar	Admin	Member
	All the Heads of Depar	rtment	
12	Mr. Sushovan Sarkar, HOD	CE	Member
13	Dr. Mallika De, HOD	CSE	Member
14	Dr. Abhigyan Ganguly, HOD	ECE	Member
15	Dr. Atanu Bhattacharya, HOD	AUE	Member
16	Dr. Sayantan Chakraborty, HOD	EE	Member
17	Mr. Subhasish Halder, TIC	ME	Member
	Four Teachers representing diff	erent categories	
18	Dr. Shefalika Ghosh Samaddar	CSE	Member
19	Dr. Sangeeta Jana Mukhopadhyay	ECE	Member
20	Ms. Madhusmita Mishra	CSE	Member
21	Mr. Kalyan Mukherjee	AUE	Member

Internal Quality Assurance Cell (IQAC)

<u>Sl.N</u>	Name	Dept.	Designation
1	Prof. (Dr.) Saradindu Panda	Admin	Chairman
2	Mr. Vivek Shaw	BSH	Coordinator
3	Mr. Simarpreet Singh, Director, JIS Group	Trustee Member	Management Representative
4	Prof. (Dr).Goutam Sutradhar, Director NIT Manipur	External	Academic Expert
5	Dr. Sayantan Chakraborty	EE	Faculty Representative
6	Dr. Mallika De	CSE	Faculty Representative
7.	Mr. Arindam Mukherjee	AUE	Faculty Representative
8.	Mr. Somnath Dasgupta	ECE	Faculty Representative
9.	Mr. Subhasish Halder	ME	Faculty Representative
10	Mr. Bishal Das	CSE	Faculty Representative
11.	Ms. Debina Dey	T&P	Dept. of T&P
12.	Ms. Amrita Chadha	Admin	Admin Representative
13.	Ms. Dazy Rani	Admin	Admin Representative
14.	Mr. Arun kumar Das,	External	Nominee from local society
15.	Mr. Rivu Ghosh, System on Chief Design Engineer Intel Corporation	External	Nominee from Employers
16.	Mr. Debasish Mazumdar, Associate Director, CDAC, Kolkata	External	Industry Representative
17.	Dr. Dipra Bhattacharya	Student	Parents Representative
18.	Mr. Aman Bhattacharya, 3rd Year, Dept. of ECE	Student	Student Representative
19.	Ms. Debosmita Ganguli, Dept. of ECE	Student	Alumni Representative

Administrative Offices

Details	Name of the Contact Person	Contact Number
Academics-Contact Person Details	Principal	9051978666
Admission-Contact Person Details	Aviroop Dewan	6291977707
Centre For Technical Support-Contact Person Details (System Admin)	Abhishek Bysack	7003763638
Estate Office -Contact Person Details (Site Supervision)	Suman Mukherjee	7003831004
Human Resource-Contact Person Details	Amrita Chadha	7829522758
Institutional Information Service (IIS)-Contact Person Details	Nirupam Sarkar	8902496652
TNP & International and Public Relations-Contact Person Details	Debina Dey	9836158442
Office of Student's Welfare-Contact Person Details	Nirupam Sarkar	8902496652
Purchase Office & Store – Contact Person Details	Rahul Chowdhury	8820426030
Registrar Office-Contact Person Details	Amrita Chadha	7829522758
Examination Cell and Student Record Section-Contact Person Details	Vivek Shaw	8296921062
Student Outreach Department-Contact Person	Nirupam Sarkar	8902496652

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

About the Department

Electrical Engineering is a professional core engineering discipline that deals with the generation of electricity from different power plants, the design of power plants, transmission of the generated power using transmission lines, design of transmission and distribution systems, medium voltage and high voltage transmission of power, distribution of generated power to different industries, commercial customers, domestic consumers and also in agricultural areas. This discipline also deals with design of different machines for power plants, industry applications, home appliances and many more. This world needs Electrical Engineers and without them we cannot move a single step.

Electrical engineering takes place in the public sector from municipal through to national governments, and in the private sector from IT (to handle projects related to electrical engineering and many more) through to international companies.

Started in the year 2011, the Department of Electrical Engineering prepares students to address the most compelling real-world electrical challenges, backed by sound knowledge, integrity, research, and innovation.

With state-of-the-art infrastructure, faculty of the highest professional standards, a carefully crafted curriculum, active industry-academia collaborations, and global exposure, the Department of Electrical Engineering, DSCITSC, provide students with focused knowledge and practical skills, research and innovation along with value-added trainings to prepare them for job ready.

Departmental Vision

To create an ethical human resource proficient in domains related to Electrical Engineering, for a successful career in the service of society in terms of **entrepreneurship**, **research or innovation**.

Departmental Mission

M1: To impart quality education and training in Electrical Engineering with an **innovative** mind suitable for making a **successful engineer** in industry, **researcher** in higher education or **entrepreneur** having startup.

M2: To develop life-long learning skills that allows them to be adaptive and responsive to changes in society, technology and the environment, as well as career demands.

M3: To provide an accredited dynamic scholarly environment wherein students learn to develop communications and leadership abilities to blossom as a professional.

M4: To ensure that every graduate is aware of the roles and responsibilities of the professional engineer in society through exposure to ethics, equity, safety and health considerations.

Program Educational Objectives

PEO1: Graduates will possess expertise in problem analysis, solving, designing, skills and necessary information for a successful career in the field of Electrical Engineering.

PEO2: Graduates will accomplish practical acquaintance in modern designing tools, technologies and eengineering software in Electrical Engineering.

PEO3: Graduates will be outstanding in communication, teamwork and multidisciplinary approach related to engineering issues in social context.

PEO4: Graduates will excel in competitive environment towards leadership and lifelong learning which is needed for a successful professional career.

Program Outcome (PO)

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex

JIS GROUP

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcome

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

Department of Electrical Engineering

PSO1: Graduates will be able to real-life problems of power systems and power electronics using Power World, PSIM, and MATLAB software tools and hardware.

PSO2: Graduates will be able to provide socially acceptable technical solutions to complex electrical engineering problems with the application of modern and appropriate techniques for sustainable development.

Bloom's Taxonomy was created in 1956 under the leadership of educational psychologist Dr Benjamin Bloom to promote higher forms of thinking in education, such as analysing and evaluating concepts, processes, procedures, and principles, rather than just remembering facts (rote learning). It is most often used when designing educational, training, and learning processes.

Lorin Anderson, a former student of Bloom, and David Krathwohl revisited the cognitive domain in the mid-nineties and made some changes, with perhaps the three most prominent ones being (Anderson, Krathwohl, Airasian, Cruikshank, Mayer, Pintrich, Raths, Wittrock, 2000):

- changing the names in the six categories from noun to verb forms
- rearranging them as shown in the chart below
- creating a processes and levels of knowledge matrix

This new taxonomy reflects a more active form of thinking and is perhaps more accurate. The new version of Bloom's Taxonomy, with examples and keywords is shown below, while the old version may be found here.

Mapping Out Learning Outcomes and Assessment Levels with Revised Bloom's Taxonomy

This document focuses on cognitive domains and the dimensions of knowledge. Detailed explanations for each domain and the use of this table follow below.

	(different levels of thinking)										
Kno≽–อ.ame DLe	Remembering Recognizing Listing Describing Identifying Retrieving Naming Locating Finding Recalling	Understanding Interpreting Exemplifying Summarizing Inferring, Paraphrasing Classifying Explaining 	(different leve Applying • Implementing • Carrying out • Using • Executing	els of thinking) Analyzing • Comparing • Organizing • Deconstructing • Attributing • Outlining • Structuring • Integrating	Evaluating • Checking • Hypothesizing • Critiquing • Experimentin g • Judging, Testing • Detecting • Monitoring	Creating • Designing • Constructing • Planning • Producing • Inventing • Devising • Making • Generating					
фер»-тор	 Finding Recalling 				Monitoring	• Generating					

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

Department of Electrical Engineering

Mapping of PEOs with Mission of the Department

PEO Statements	M1	M2	М3	M4	M5
PEO1: Graduates will possess expertise in problem analysis, solving, designing, skills and necessary information for a successful career in the field of Electrical Engineering.	3		2	3	2
PEO2: Graduates will accomplish practical acquaintance in modern designing tools, technologies and eengineering software in Electrical Engineering.	3	2	2	3	3
PEO3: Graduates will be outstanding in communication, teamwork and multidisciplinary approach related to engineering issues in social context.	3	1	2	3	2
PEO4: Graduates will excel in competitive environment towards leadership and life-long learning which is needed for a successful professional career.	3	1	3	3	2

Note: M1, M2, M3, M4, M5 are distinct elements of Mission statement. Enter correlation levels 1, 2 or 3 as defined below:

'1': Slight (Low) '2': Moderate (Medium) '3': Substantial (High)

'--': If there is no correlation.

Mapping of PEOs with POs

O Ed L		Program Outcomes										
Program lucational bjectives	PO1	PO2	РОЗ	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	P012
PEO 1	3	3	1	1	2	3	2	1	2	1	1	
PEO2	3	3	3	1	3	3	3	3	2	3	1	
PEO3	3	3	1	1	2	3	3	1	2	3	2	
PEO4	1	2	1	3	2	1	1	1	3	3	3	

3-Strongly Mapped, 2-Moderately Mapped, 1-Weakly Mapped,

0-NA

Student-centric methods, such as experiential learning, participative learning, and problem-solving methodologies are used for enhancing learning experiences.

Student-centric methods, such as experiential learning, participative learning, and problem-solving methodologies are used for enhancing learning experiences.

Student centric methods, such as experiential learning, participative learning and problem-solving methodologies are used for enhancing learning experiences

Departmental Curriculum

Reasoning

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) 1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

First Year First Semester										
Mandatory Induction Program- 3 weeks duration										
Sl No	Category	Subject Code	Subject Name	Total con	Credits					
INO.				L	Т	Р				
The	ory									
1	Basic Science course	BS-PH101/ BS-CH101	Physics-I (Gr-A)/ Chemistry-I(Gr-B)	3	1	0	4			

	Dr. Sudhir Chandra Si of Technology & Sports JIS GROUP	ur Institute De	partment of Electrical Engineering				
2	Basic Science course	BS-M101/ BS-M102	Mathematics -IA*/ Mathematics -IB *	3	1	0	4
3	Engineering Science Courses	ES-EE101	Basic Electrical Engineering	3	1	0	4
		Total Theo	ory	9	3	0	12
Prac	ctical						
1	Basic Science course	BS-PH191/ BS-CH191	Physics-I Laboratory (Gr-A)/ Chemistry-I Laboratory (Gr-B)	0	0	3	1.5
2	Engineering Science Courses	ES-EE191	Basic Electrical Engineering Laboratory	0	0	2	1
3	Engineering Science Courses	ES-ME191/ ES-ME192	Engineering Graphics & Design(Gr-B)/ Workshop/Manufacturing Practices(Gr-A)	1	0	4	3
		ical	1		9	5.5	
		10	3	9	17.5		

* Mathematics -IA (BS-M101) - CSE & IT Mathematics IB (BS M102) All stream excent CS

Mathematics -IB (BS-M102) - All stream except CSE & IT

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) 1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

First Year Second Semester										
Sl No.	Category	Subject	Subject Name	Tot: of co	Credits					
		Code		L	Т	Р				
The	Theory									
1	Basic Science courses	BS-PH201/ BS-CH201	Physics-I (Gr-B)/ Chemistry-I (Gr-A)	3	1	0	4			
2	Basic Science courses	BS-M201/ BS-M202	Mathematics -IIA [#] / Mathematics -IIB [#]	3	1	0	4			
3	Engineering Science Courses	ES-CS201	Programming for Problem Solving	3	0	0	3			

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex

Department of Electrical Engineering

	JIS GROUP						
4	Humanities and Social Sciences including Management courses	HM-HU201	English	2	0	0	2
		Total Theory		11	2	0	13
Prac	etical						
1	Basic Science courses	BS-PH291/ BS-CH291	Physics-I Laboratory (Gr-B)/ Chemistry-I Laboratory (Gr-A)	0	0	3	1.5
2	Engineering Science Courses	ES-CS291	Programming for Problem Solving	0	0	4	2
3	Engineering Science Courses	ES-ME291/ ES-ME292	Engineering Graphics & Design(Gr-A)/ Workshop/Manufacturing Practices(Gr-B)	1	0	4	3
4	Humanities and Social Sciences including Management courses	HM-HU291	Language Laboratory	0	0	2	1
		1	0	13	7.5		
	Tota	12	2	13	20.5		

Mathematics -II (BS-M201) - CSE & IT

Mathematics -II (BS-M202) - All stream except CSE & IT

	Group-A	Group-B
1 _{st} Year 1 st Semester	Physics-I (BS-PH101); Workshop/Manufacturing Practices (ES-ME192)	Chemistry-I (BS-CH101); Engineering Graphics & Design (ES-ME191)
1 st Year 2 nd Semester	Chemistry-I (BS-CH201); Engineering Graphics & Design (ES-ME291)	Physics-I (BS-PH201); Workshop/Manufacturing Practices (ES-ME292)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019) 3rd Semester

Theo	ry:	<u> </u>					
S1.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			Per week			Contact	
			L	Т	Р	Hrs	
1	PC-EE 301	Electric Circuit Theory	3	1	0	4	4
2	PC-EE 302	Analog Electronics	3	0	0	3	3

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex

Department of Electrical Engineering

	JIS GROUP						
3	PC-EE 303	Electromagnetic field	3	0	0	3	3
		theory					
4	ES-ME 301	Engineering Mechanics	3	0	0	3	3
5	BS-M 301	Mathematics-III	3	0	0	3	3
6	BS-EE301	Biology for Engineers	3	0	0	3	3
7	MC-EE 301	Indian Constitution	3	0	0	3	0
		TOTAL OF SEMESTER:				22	19

Sl.	CODE	Paper	Contact periods			Total	Credits
			Per week			Contact	
No.			L	Т	Р	Hrs	
1	PC-EE 391	Electric Circuit Theory	0	0	2	2	1
		Laboratory					
2	PC-EE 392	Analog Electronics	0	0	2	2	1
		laboratory					
3	PC-CS 391	Numerical Methods	0	0	2	2	1
		laboratory					
		Total of Practical /				06	3
		Sessional					
TOT	AL OF SEMES	TER:				28	22

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019) <u>4th Semester</u>

Theory:

Sl.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			P	er week		Contact	
			L	Т	Р	Hrs	
1	PC-EE 401	Electric machine-I	3	0	0	3	3
2	PC-EE 402	Digital Electronic	3	0	0	3	3
3	PC-EE 403	Electrical and Electronics	3	0	0	3	3
		Measurement					
4	ES-EE 401	Thermal Power	3	0	0	3	3
		Engineering					
5	HM-EE401	Values and Ethics in	3	0	0	3	3
		profession					
6	MC- EE401	Environmental Science	3	0	0	3	0
-			_	-	-	-	
		TOTAL OF SEMESTER:				18	15

S1.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			P	er week		Contact	
			L	Т	Р	Hrs	
1	PC-EE 491	Electric machine-I	0	0	2	2	1
		laboratory					
2	PC-EE 492	Digital electronics	0	0	2	2	1
		laboratory					
3	PC-EE 493	Electrical and electronic measurement laboratory	0	0	2	2	1
4	ES-ME 491	Thermal power engineering laboratory	0		2	2	1
		Total of Practical /				08	4
		Sessional					
TOT	AL OF SEMES	TER:				26	19

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019) <u>5th Semester</u>

Theory:

Sl.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.		_	P	er week	2	Contact	
			L	Т	Р	Hrs	
1	PC-EE 501	Electric machine-II	3	0	0	3	3
2	PC-EE 502	Power system-I	3	0	0	3	3
3	PC-EE 503	Control system	3	0	0	3	3
4	PC-EE 504	Power electronics	3	0	0	3	3
5	PE-EE 501	A. High voltage	3	0	0	3	3
		Engineering					
		B. Power Plant Engineering					
		C. Renewable & Non					
		conventional energy					
6	OE-EE 501	A. Data structure &	3	0	0	3	3
		algorithm					
		B. Object oriented					
		programming					
		C. Computer organization					
		& architecture					
		TOTAL OF SEMESTER:				18	18

Sl.	CODE	Paper	Contact periods		Total	Credits	
No.			Per week		Contact		
			L	Т	Р	Hrs	
1	PC-EE 591	Electric Machine-II	0	0	2	2	1
		laboratory					
2	PC-EE 592	Power system-I laboratory	0	0	2	2	1
3	PC-EE 593	Control system laboratory	0	0	2	2	1
4	PC-EE 594	Power Electronics	0	0	2	2	1
		laboratory					
		Total of Practical /				08	4
		Sessional					
TOT	AL OF SEMES	TER:				26	22

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019) 6th Semester

Theory:

Sl.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			P	er week		Contact	
			L	Т	P	Hrs	
1	PC-EE 601	Power System-II	3		0	3	3
2	PC-EE-602	Micro processor & micro controller	3	0	0	3	3
3	PE-EE 601	A. Digital control systemB. HVDC transmissionC. Electrical Machine Design	3	0	0	3	3
4	PE-EE 602	 A. Electrical and Hybrid vehicle B. Power quality & FACTS C. Industrial Electrical systems 	3	0	0	3	3
5	OE-EE 601	 A. Digital Signal Processing B. Communication Engineering C. VLSI & Microelectronics 	3	0	0	3	3
6	HM-EE 601	Economics for Engineers	3	0	0	3	3
		TOTAL OF SEMESTER:				18	18

Practical / Sessional:

Sl.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			Per week			Contact	
			L	Т	Р	Hrs	
1	PC-EE 691	Power system-II laboratory	0	0	2	2	1
2	PC-EE692	Microprocessor &	0	0	2	2	1
		microcontroller laboratory					
2	PC-EE 681	Electrical & Electronic	1	0	4	5	3
		design laboratory					
		Total of Practical /				09	05
		Sessional					
TOT	AL OF SEMES	TER:				27	23

Summer Internship of 3-week duration after 6th semester. Students will be assessed based on submission of report on internship and presentation in a seminar in 7th semester

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019) <u>7th Semester</u>

Theory:

Sl.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.		_	P	er week		Contact	
			L	Т	Р	Hrs	
1	PC-EE 701	Electric Drive	3	0	0	3	3
2	PE-EE 701	A. Control system Design	3	0	0	3	3
		B. Electrical Energy					
		conservation & Auditing					
		C. Power generation					
		economics					
3	OE-EE701	A. Artificial intelligence	3	0	0	3	3
		B. Internet of things					
		C. Computer graphics					
4	OE-EE702	A. Embedded system	3		0	3	3
		B. Digital image processing					
		C. Computer network					
		_					
5	HM-EE701	Principle of Management	3	0	0	3	3
		TOTAL OF SEMESTER:				15	15

Sl.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			Per week		Contact		
			L	Т	Р	Hrs	
1	PC-EE 791	Electric Drive laboratory	0	0	2	2	1
2	PW-EE 781	Project stage-I	0	0	4	4	2
3	PW-EE782	Seminar	0	0	0	0	1
		Total of Practical /				06	04
		Sessional					
TOTAL OF SEMESTER:					21	19	

8th Semester

Theory:							
S1.	CODE	Paper	Contact periods		Total	Credits	
No.		_	Per week		Contact		
			L	Т	Р	Hrs	
1	PC-EE 801	Utilization of Electric	3	0	0	3	3
		Power					
2	PE- EE 801	A. Line -commutated and	3	0	0	3	3
		active PWM rectifiers					
		B. Power system dynamics					
		& control					
		C. Advanced Electric					
		Drives					
		D. Industrial Automation					
		and Control					
3	OE-EE 801	A. Soft computing	3	0	0	3	3
		Techniques					
		B. Biomedical					
		Instrumentation.					
		C. Introduction to Machine					
		learning					
		D. Sensors and Transducers					
		TOTAL OF SEMESTER:				09	09

Sl.	CODE	Paper	Cont	act peri	ods	Total	Credits
No.			Per week		Contact		
			L	Т	Р	Hrs	
1	PW-EE 881	Project stage-II	0	0	16	16	8
		Total of Practical /				16	08
		Sessional					
TOTAL OF SEMESTER:					25	17	

Syllabus & Course Outcomes

1st Semester

Course Code : BS-PH101/ BS-PH201	Category : Basic Science Courses			
Course Title : Physics-I	Semester : First/ Second			
L-T-P : 3-1-0	Credit:4			
Pre-Requisites:				

Course objectives :

Basic concepts of mechanics, optics and its applications, electricity, magnetism and qualitative understanding of concepts of quantum physics and statistical mechanics.

1. Mechanics (7L)

Problems including constraints & friction. Basic ideas of vector calculus and partial differential equations. Potential energy function F = -grad V, equipotential surfaces and meaning of gradient. Conservative and non-conservative forces. Conservation laws of energy & momentum. Non-inertial frames of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector. Moment of inertia.

2. Optics (5L)

- Distinction between interference and diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits (only the expressions for max;min, & intensity and qualitative discussion of fringes); diffraction grating(resolution formulac only), characteristics of diffration grating and its applications.
- Polarisation : Introduction, polarisation by reflection, polarisation by double reflection, scattering of light, circular and elliptical polarisation, optical activity.
- Lasers : Principles and working of laser : population inversion, pumping, various modes, threshold population inversion with examples .

3. Electromagnetism and Dielectric Magnetic Properties of Materials (8L)

- Maxwell's equations. Polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius- Mossotti equation(expression only), applications of dielectrics.
- Magnetisation, permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications.

4. Quantum Mechanics (16L)

Introduction to quantum physics, black body radiation, explanation using the photon concept, Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves, uncertainty principle, Schrodinger wave equation, particle in box, quantum harmonic oscillator, hydrogen atom.

5. Statistical Mechanics (8L)

Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Course outcomes:

Students will be familiar with

- Basic concepts of mechanics
- Bragg's Law and introduction to the principles of lasers, types of lasers and applications.
- Various terms related to properties of materials such as, permeability, polarization, etc. .
- Some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of . materials.
- Simple quantum mechanics calculations. •

Learning Resources:

- 1. Introduction to Electrodynamics, David J. Griffiths, Pearson Education India Learning Private Limited
- 2. Principles of Physics, 10ed, David Halliday, Robert Resnick Jearl Walker, Wiley
- 3. Electricity, Magnetism, and Light, Wayne M. Saslow, Academic Press
- 4. Engineering Mechanics (In SI Units) (SIE), S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati, McGraw Hill Education
- 5. Classical mechanics, Narayan Rana, Pramod Joag, McGraw Hill Education
- 6. Introduction to Classical Mechanics, R Takwale, P Puranik, McGraw Hill Education
- 7. Engineering Mechanics, M.K. Harbola, Cengage India
- 8. An Introduction to Mechanics (SIE), David Kleppner, Robert Kolenkow, McGraw Hill Education
- 9. Principles of mechanics, John L. Synge and Byron A. Griffith, New York, McGraw-Hill
- 10. Mechanics (Dover Books on Physics), J. P. Den Hartog, Dover Publications Inc.
- 11. Engineering Mechanics: Dynamics, L.G. Kraige J.L. Meriam, Wiley
- 12. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Robert Eisberg, Robert Resnick, Wiley
- 13. Introduction to Quantum Mechanics, J. Griffiths David, Pearson Education
- 14. Modern Quantum Mechanics, J. J. Sakurai, Cambridge University Press
- 15. Optics, Hecht, Pearson Education
- 16. Optics, Ghatak, McGraw Hill Education India Private Limited
- 17. Fundamentals of Statistical and Thermal Physics, Reif, Sarat Book Distributors
- 18. Statistical Mechanics, Pathria, Elsevier
- 19. Statistical Physics, L.D.Landau, E.M. Lifshitz, Butterworth-Heinemann

Course Code : BS-CH101/ BS-CH201	Category : Basic Science Courses			
Course Title : Chemistry-I	Semester : First/ Second			
L-T-P : 3-1-0	Credit:4			
Pre-Requisites:				

Detailed contents

i) Atomic and molecular structure (10 lectures)

Schrodinger equation. Particle in a box solutions and their applications for simple sample. Molecular orbitals of diatomic molecules (e.g.H₂). Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

ii) Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering. **iii)Intermolecular** *forces and potential energy surfaces (4 lectures)*

Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena. iv)Use of free energy in chemical equilibria (8 lectures)

First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.

v) Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries

vi)Stereochemistry (4 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

vii) Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

Course Ourcomes:

COURSE OUTCOMES (COs)								
CODE	DESCRIPTION							
BS- CH101.CO 1	Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces and list major chemical reactions that are used in the synthesis of molecules							
BS- CH101.CO 2	Rationalise bulk properties and processes using thermodynamic considerations							
BS- CH101.CO 3	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques							
BS- CH101.CO 4	Rationalise periodic properties such as ionization potential, electronegativity, oxidation states andelectronegativity.							

CO-PO Mapping

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	3	2	3	2	1	2	1	1	2	2
CO2	3	3	3	2	3	3	-	1	1	-	-	3
CO3	3	3	3	3	2	2	2	1	2	3	3	1
CO4	3	3	3	3	1	3	1	-	1	-	1	1
Average	2.75	3	3	2.5	1.5	2.25	1.33	1.33	1.25	2.0	2.0	1.75

Learning Resources:

- 1. Engineering Chemistry, Satyaprakash, Khanna Book Publishing, Delhi
- 2. University chemistry, by B. H. Mahan
- 3. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 4. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 5. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 6. Physical Chemistry, by P. W. Atkins
- 7. Spectroscopy of Organic Compounds, by P.S.Kalsi, New Age International Pvt Ltd Publishers
- 8. Physical Chemistry, P. C. Rakshit, Sarat Book House
- Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

Department of Electrical Engineering

Course Code : BS-M101	Category : Basic Science Course							
Course Title : Mathematics - I A	Semester : First (CSE & IT)							
L-T-P : 3-1-0	Credit: 4							
Pre-Requisites: High School Mathematics								

Module	Description of Topic	Lectures Hours					
110.	Calculus (Integration):	nours					
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and						
1	Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.	8					
	Calculus (Differentiation):						
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with						
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	6					
	Matrices:						
	Matrices, Vectors: addition and scalar multiplication, matrix multiplication; Linear						
3	systems of equations, linear Independence, rank of a matrix, determinants,	7					
	Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan						
	elimination.						
	Vector Spaces:						
	transformations (maps) Range and Kernel of a linear map. Rank and Nullity						
4	Inverse of a linear transformation Rank-Nullity theorem composition of linear						
	maps, Matrix associated with a linear map.						
	Vector Spaces (Continued):						
	Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric, and Orthogonal						
5	Matrices, Eigenbases.	10					
5	Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.	10					

Course Outcomes:

The students will be able to:

Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

Understand the domain of applications of mean value theorems to engineering problems.

Learn different types of matrices, concept of rank, methods of matrix inversion and their applications.

Understand linear spaces, its basis and dimension with corresponding applications in the field of computer science.

Learn and apply the concept of eigen values, eigen vectors, diagonalisation of matrices and orthogonalization in inner product spaces for understanding physical and engineering problems

Learning Resources:

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.
- 8. Hoffman and Kunze: Linear algebra, PHI.

Course Code : BS-M102	Category : Basic Science Course
Course Title : Mathematics -I B	Semester : First (All stream except CSE & IT)
L-T-P : 3-1-0	Credit: 4
Dro Doquisitos, High School Mathematics	

Pre-Requisites: High School Mathematics

Module No.	Description of Topic	Lectures Hours
	Calculus (Integration):	
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	8
1	Gamma functions and their properties; Applications of definite integrals to	
	evaluate surface areas and volumes of revolutions.	
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	6
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	
	Sequence and Series:	
	Convergence of sequence and series, tests for convergence; Power series,	11
3	Taylor's series, series for exponential, trigonometric and logarithm functions;	
	Fourier series: Half range sine and cosine series, Parseval's theorem.	
	Multivariate Calculus:	
	Limit, continuity and partial derivatives, Directional derivatives, Total	9
4	derivative; Tangent plane and normal line; Maxima, minima and saddle points;	
	Method of Lagrange multipliers; Gradient, Curl and Divergence.	
	Matrices:	
	Inverse and rank of a matrix, Rank-nullity theorem; System of linear equations;	8
5	Symmetric, Skew-symmetric and Orthogonal matrices; Determinants;	
	Eigenvalues and Eigenvectors; Diagonalization of matrices; Cayley-Hamilton	
	Theorem, and Orthogonal transformation.	

Course Outcomes:

On successful completion of the learning sessions of the course, the student will be able to:

COURSE OUTCOMES (COs)										
CODE	DESCRIPTION									
BS-M 102.CO 1	Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.									
BS-M	Understand the domain of applications of mean value									
102.CO 2	theorems to engineering problems.									

BS-M 102.CO 3	Learn the tools of power series and Fourier series to analyze engineering problems and apply the concept of convergence of infinite series in many approximation techniques in engineering disciplines.
BS-M 102.CO 4	Apply the knowledge for addressing the real life problems which comprise of several variables or attributes and identify extremum points of different surfaces of higher dimensions.
BS-M 102.CO 5	Learn and apply the concept of rank-nullity, eigen values, eigen vectors, diagonalization and orthogonalization of matrices for understanding physical and engineering problems.

CO-PO Mapping:

	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	2	2	2	-	-	1	2	2
CO2	3	3	2	2	2	2	-	-	2	-	1	2
CO3	3	3	3	2	2	-	2	-	2	1	-	1
CO4	3	3	2	2	3	2	-	-	-	-	2	2
CO5	3	3	2	2	2	2	1	-	1	1	2	1
Average	3	3	2.4	2	2.2	2	1.67	-	1.67	1	1.75	1.6

Learning Resources:

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.

Course Code : ES-EE101	Category : Engineering Science Courses
Course Title : Basic Electrical Engineering	Semester : First
L-T-P : 3-1-0	Credit: 4
Pre-Requisites:	

Detailed contents:

Module 1: DC Circuits (8 hours)

Electrical circuit elements (R, L and C), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

Module 2: AC Circuits (8 hours)

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.

Module 3: Transformers (6 hours)

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Module 4: Electrical Machines (8 hours)

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor. Construction

and working of synchronous generators.

Module 5: Power Converters (6 hours)

DC-DC buck and boost converters, duty ratio control. Single-phase and three-phase voltage source inverters; sinusoidal modulation.

Module 6: Electrical Installations (6 hours)

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

Course Outcomes

Course Name: ES-EE-101

(Basic Electrical Engineering)

Course outcome codes	Statement									
ES-EE-101.1	To describe fundamentals of DC and AC circuits									
ES-EE-101.2	To explain the operating principle of transformer									
ES-EE-101.3	To illustrate construction, working of Electrical Machines									
ES-EE-101.4	To classify different power converters and installation process									

COs	PO	РО	P01	P01	P01	PSO	PSO							
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
ESEE- 101.1	3	2	2	2	2	2	1	-	2	2	2	3	2	2
ESEE - 101.2	3	2	2	2	2	2	1	-	2	2	2	3	2	2
ESEE - 101.3	3	2	2	2	2	2	1	-	2	2	2	3	2	2
ESEE - 101.4	3	2	2	2	2	2	1	-	2	2	2	3	2	2
Averag e	3	2	2	2	2	2	1	-	2	2	2	3	2	2

Basic Electrical Engineering

Learning Recourses:

- 1. Ritu Sahdev, Basic Electrical Engineering, Khanna Book Publishing Co. (P) Ltd., Delhi.
- 2. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 3. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 4. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 5. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 6. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

Course Code : BS-PH191/ BS-PH291	Category : Basic Science course				
Course Title : Physics-I Laboratory	Semester : First/ Second				
L-T-P : 0-0-3	Credit:1.5				
Pre-Requisites:					

Choose 10 experiments including at least one from Optics, Electricity and Magnetism and Quantum Mechanics and at least a total of six from these three groups.

Experiments in Optics

- 1. Determination of dispersive power of the material of a prism
- 2. Determination of wavelength of a monochromatic light by Newton's ring
- 3. Determination of wavelength of a monochromatic light by Fresnel's bi-prism
- 4. Determination of wavelength of the given laser source by diffraction method

Electricity & Magnetism experiments

- 1. Determination of thermo electric power of a given thermocouple.
- 2. Determination of specific charge (e/m) of electron by J.J. Thompson's method.
- 3. Determination of dielectric constant of a given dielectric material.
- 4. Determination of Hall coefficient of a semiconductor by four probe method.
- 5. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.
- 6. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance.
- 7. Determination of unknown resistance using Carey Foster's bridge
- 8. Study of Transient Response in LR, RC and LCR circuits using expeyes
- 9. Generating sound from electrical energy using expeyes

Experiments in Quantum Physics

- 1. Determination of Stefan-Boltzmann constant.
- 2. Determination of Planck constant using photocell.
- 3. Determination of Lande-g factor using Electron spin resonance spectrometer.
- 4. Determination of Rydberg constant by studying Hydrogen spectrum.
- 5. Determination of Band gap of semiconductor.
- 6. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

Miscellaneous experiments

- 1. Determination of Young's modulus of elasticity of the material of a bar by the method of flexure
- 2. Determination of bending moment and shear force of a rectangular beam of uniform cross-section
- 3. Determination of modulus of rigidity of the material of a rod by static method
- 4. Determination of rigidity modulus of the material of a wire by dynamic method
- 5. To determine the moment of inertia of a body about an axis passing through its centre of gravity and to determine the modulus of rigidity of the material of the suspended wire
- 6. Determination of coefficient of viscosity by Poiseulle's capillary flow method

On successful completion of the learning sessions of the course, the learner will be able to:

	COURSE OUTCOMES (COs)							
CODE	DESCRIPTION							
	Ability to increase power of observation and reasoning and to think							
BS_PH101 CO1	and work with precision and accuracy in daily life. Use Slide							
b5-111/1.c01	callipers and screw gauge, familiar with concept of Band gap of							
	semiconductor and dielectric constant							
	Get the opportunity to verify the validity of various laws taught in							
BS DH101 CO2	curriculum,							
b5-11171.CO2	Familiar with dispersive power of the material of a prism,							
	Newton's ring, Planck constant							
	Familiar with Hall coefficient of a semiconductor Electron spin							
BS-PH191.CO3	resonance spectrometer, Young's modulus, Poiseulle's capillary							
	flow method for viscosity measurement.							

CO–PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	2	-	-	2	1	2
CO2	3	3	3	3	3	1	2	-	-	2	1	2
CO3	3	3	3	3	3	1	2	-	-	2	1	2

Course Code : BS-CH191/ BS-CH291	Category : Basic Science Courses
Course Title : Chemistry-I Laboratory	Semester : First/ Second
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	

Choose 10 experiments from the following:

- 1. Conduct metric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution.
- 2. pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution.
- 3. Determination of dissolved oxygen present in a given water sample.

Department of Electrical Engineering

- 4. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)
- 5. Determination of surface tension and viscosity
- 6. Thin layer chromatography
- 7. Ion exchange column for removal of hardness of water
- 8. Determination of the rate constant of a reaction
- 9. Determination of cell constant and conductance of solutions
- 10. Potentiometry determination of redox potentials and emfs
- 11. Saponification/acid value of an oil
- 12. Chemical analysis of a salt
- 13. Determination of the partition coefficient of a substance between two immiscible liquids
- 14. Adsorption of acetic acid by charcoal
- 15. Use of the capillary viscosimeters to the demonstrate of the isoelectric pointas

the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) 1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-EE191	Category : Engineering Science Courses
Course Title : Basic Electrical Engineering Laboratory	Semester : First
L-T-P : 0-0-2	Credit: 1
Pre-Requisites:	

Choose 10 experiments from the following:

1. First activity: Introduction to basic safety precautions and mentioning of the do's and Don'ts. Noting

down list of experiments to be performed, and instruction for writing the laboratory reports by the

students. Group formation. Students are to be informed about the modalities of evaluation.

- 2. Introduction and uses of following instruments :
 - (a) Voltmeter
 - (b) Ammeter
 - (c) Multimeter
 - (d) Oscilloscope

Demonstration of real life resistors, capacitors with color code, inductors and autotransformer.

- 3. Demonstration of cut-out sections of machines: DC machine, Induction machine, Synchronous machine and single phase induction machine.
- 4. Calibration of ammeter and Wattmeter.
- 5. Determination of steady state and transient response of R-L, R-C and R-L-C circuit to a step change

in

voltage.

- 6. Determination of steady state response of R-L and R-C and R-L-C circuit and calculation of impedance and power factor.
- 7. Determination of resonance frequency and quality factor of series and parallel R-L-C circuit. 8. (a) Open circuit and short circuit test of a single-phase transformer

(b) Load test of the transformer and determination of efficiency and regulation

9. Demonstration of three phase transformer connections. Voltage and current relationship, phase shifts

between the primary and secondary side.

- 10. Measurement of power in a three phase unbalanced circuit by two wattmeter method.
- 11. Determination of Torque -Speed characteristics of separately excited DC motor.

12. Determination of Torque speed characteristics and observation of direction reversal by change

of

phase sequence of connection of Induction motor.

- 13. Determination of operating characteristics of Synchronous generator.
- 14. Demonstration of operation of (a) DC-DC converter (b) DC-AC converter (c) DC-AC converter

for

speed control of an Induction motor

15. Demonstration of components of LT switchgear.

ES-EE-191 Course Outcomes							
ESEE191.1	Demonstrate the characteristics of carbon, tungsten & florescent lamps.						
ESEE191.2	Verify the different electrical parameters obtained using network theorems.						
ESEE191.3	Experiment on R-L-C series & parallel circuits						

SUBJECT	COs		PROGRAM OUTCOMES(POs)										
CODE		PO	PO	РО	РО	PO	РО	РО	РО	PO	PO1	PO1	PO1
		1	2	3	4	5	6	7	8	9	0	1	2
ESEE191	ESEE191. 1	3	2	2	2	2	2	1	1	2	2	2	3
	ESEE191. 2	3	2	2	2	2	2	1	-	2	2	2	3
	ESEE191. 3	3	2	2	2	2	2	1	-	2	2	2	3
	AVERAG E	3	2	2	2	2	2	1	-	2	2	2	3

Course Code : ES-ME191/ ES-ME 291	Category : Engineering Science Courses				
Course Title : Engineering Graphics & Design	Semester : First/ Second				
L-T-P : 1-0-4	Credit: 3				
Pre-Requisites:					

Sl. No.	Content	Lecture (L)	Practical (P)
1	INTRODUCTION TO ENGINEERING DRAWING Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Different types of lines and their use; Drawing standards and codes.	1	4
2	LETTERING, DIMENSIONING, SCALES Plain scale, Diagonal scale and Vernier Scales.	1	4

	CEOMETDICAL CONSTRUCTION AND CURVES		
	GEOMETRICAL CONSTRUCTION AND CORVES		
3	Construction of polygons, Conic sections including the Rectangular	1	4
	Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid,		
	Involute, Archemedian Spiral.		
	PROJECTION OF POINTS, LINES, SURFACES		
	Principles of Orthographic Projections-Conventions - 1st and 3rd angle		
4	projection, Projections of Points and lines inclined to both planes;	1	4
	Projections of planes (Rectangle, pentagon, Hexagon etc.) inclined Planes		
	- Auxiliary Planes.		
	PROJECTION OF REGULAR SOLIDS		
_	Regular solids inclined to both the Planes- Auxiliary Views; Draw		
5	simple annotation, dimensioning and scale (Cube, Pyramid, Prism,	1	4
	Cylinder, Cone).		
	COMBINATION OF REGULAR SOLIDS, FLOOR PLANS		
<i>.</i>	Regular solids in mutual contact with each other like Spheres in contact	1	4
6	with cones standing on their base. Floor plans that include: windows,	1	4
	doors, and fixtures such as WC, bath, sink, shower, etc.		
	ISOMETRIC PROJECTIONS		
	Principles of Isometric projection - Isometric Scale, Isometric		
7	Views, Conventions; Isometric Views of lines, Planes, Simple and	1	4
	compound Solids; Conversion of Isometric Views to Orthographic		
	Views and Vice-versa, Conventions;		
	SECTIONS AND SECTIONAL VIEWS OF RIGHT ANGULAR		
	SOLIDS		
	Prism, Cylinder, Pyramid, Cone - Auxiliary Views; Development of		
8	surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;	1	4
	Draw the sectional orthographic views of geometrical solids, objects		
	from industry and dwellings (foundation to slab only)		

	OVERVIEW OF COMPUTER GRAPHICS, CUSTOMISATION&		
	CAD DRAWING		
	listing the computer technologies that impact on graphical		
	communication, Demonstrating knowledge of the theory of CAD		
	software [such as: The Menu System, Toolbars (Standard, Object		
	Properties, Draw, Modify and Dimension), Drawing Area (Background,		
	Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut		
0	menus (Button Bars), The Command Line (where applicable), The Status	1	
9	Bar, Different methods of zoom as used in CAD, Select and erase	1	4
	objects.; Isometric Views of lines, Planes, Simple and compound Solids];		
	Set up of the drawing page and the printer, including scale settings,		
	Setting up of units and drawing limits; ISO and ANSI standards for		
	coordinate dimensioning and tolerancing; Orthographic constraints,		
	Snap to objects manually and automatically; Producing drawings		
	by using various coordinate input entry methods to draw straight lines,		
	Applying various ways of drawing circles;		
	ANNOTATIONS, LAYERING & OTHER FUNCTIONS		
	applying dimensions to objects, applying annotations to drawings;		
	Setting up and use of Layers, layers to create drawings, Create, edit		
	and use customized layers; Changing line lengths through modifying		
	existing lines (extend/lengthen); Printing documents to paper using		
	the print command; orthographic projection techniques; Drawing		
	sectional views of composite right regular geometric solids and project		
10	the true shape of the sectioned surface; Drawing annotation, Computer-	2	8
	aided design (CAD) software modeling of parts and assemblies.		
	Parametric and non-parametric solid, surface, and wireframe models. Part		
	editing and two-dimensional documentation of models. Planar projection		
	theory, including sketching of perspective, isometric, multiview,		
	auxiliary, and section views. Spatial visualization exercises.		
	Dimensioning guidelines, tolerancing techniques; dimensioning and scale		
	multi views of dwelling;		

	DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT		
	Geometry and topology of engineered components: creation of		
	engineering models and their presentation in standard 2D blueprint form		
	and as 3D wire-frame and shaded solids; meshed topologies for		
	engineering analysis and tool-path generation for component		
11	manufacture; geometric dimensioning and tolerancing; Use of solid-	2	0
11	modeling software for creating associative models at the component and	2	8
	assembly levels; floor plans that include: windows, doors, and fixtures		
	such as WC, bath, sink, shower, etc. Applying colour coding according to		
	building drawing practice; Drawing sectional elevation showing		
	foundation to ceiling; Introduction to Building Information Modelling		
	(BIM).		

Course Outcomes:

On successful completion of the learning sessions of the course, the student will be able to:

CO1	Learn basics of drafting and use of drafting tools which develops the fundamental skills of industrial drawings.
CO2	Know about engineering scales, dimensioning and various
	geometric curves necessary to understand design of machine
	elements.
CO3	Understand projection of line, surface and solids to create the
	knowledge base of orthographic and isometric view of structures
	and machine
CO4	Become familiar with computer aided drafting useful to share the
	design model to different section of industries as well as for
	research & development.

CO-PO Mapping:

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	2	1	1	1	-	1	-	-	1
CO2	3	-	2	2	-	1	-	-	1	1	1	1
CO3	2	2	2	1	-	1	1	1	1	-	-	1
CO4	1	-	2	2	2	1	-	-	1	1	1	1

General Instructions

- 1. In every topic some problems are to be done in the class and some are to be given to students as home assignment.
- 2. The problems for class work are to be prepared on drawing sheet of A1 size in the class/ using AutoCAD software.
- 3. The problems for home assignments are to be prepared on drawing copy/ using AutoCAD software.

- 4. Print out of every assignment is to be taken for CAD Drawings on Drawing sheets (A4 Sheets).
- 5. A title block must be prepared in each sheet/ assignment.

Following is the list of drawing instruments that required for making engineering drawings on paper with perfection.

- 1. Drawing Board
- 2. Mini drafter/ Set-squares (45°-45° & 60°-90°), T-square
- 3. Protractor (180°, 360°)
- 4. Scales (Plain, Diagonal)
- 5. Compass (Small and Large)
- 6. Divider (Small and Large)
- 7. French Curves
- 8. Drawing paper (A1 Size)
- 9. Drawing pencil (H, HB, B)
- 10. Sharpener
- 11. Eraser
- 12. Drawing pins & clips
- 13. Duster or handkerchief etc.

Learning Resources:

- 1. Pradeep Jain, Ankita Maheswari, A.P. Gautam, Engineering Graphics & Design, Khanna Publishing House
- 2. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication
- 4. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers
- 6. Corresponding set of CAD Software Theory and User Manuals

Course Code : ES-ME192/ ES-ME 292	Category : Engineering Science Courses
Course Title : Workshop/ Manufacturing Practices	Semester : First/ Second
L-T-P : 1-0-4	Credit:3
Pre-Requisites:	

(i) Lectures & videos:

Detailed contents:

- 1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods
- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical & Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing

(ii) Workshop Practice:

Machine shop (8 hours)

Typical jobs that may be made in this practice module:

To make a pin from a mild steel rod in a lathe.

To make rectangular and vee slot in a block of cast iron or mild steel in a shaping and / or milling machine.

Fitting shop (8 hours)

Typical jobs that may be made in this practice module:

To make a Gauge from MS plate.

Carpentry (8 hours)

Typical jobs that may be made in this practice module:

To make wooden joints and/or a pattern or like.

Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs))

Typical jobs that may be made in this practice module:

ARC WELDING (4 hours): To join two thick (approx 6mm) MS plates by manual metal arc welding.

GAS WELDING (4 hours): To join two thin mild steel plates or sheets by gas welding.

Casting (8 hours)

Typical jobs that may be made in this practice module:

One/ two green sand moulds to prepare, and a casting be demonstrated.

Smithy (4 hours) ~ 4 hours

Typical jobs that may be made in this practice module:

A simple job of making a square rod from a round bar orlike.

Plastic moulding & Glass cutting (4 hours)

Typical jobs that may be made in this practice module:

For plastic moulding, making at least one simple plastic component should be made.

For glass cutting, three rectangular glass pieces may be cut to make a kaleidoscope using a black colour diamond cutter, or similar other components may be made.

Electrical & Electronics (8 hours)

Familiarization with LT switchgear elements, making its sketches and noting down its specification. Kitkat fuse, Glass cartridge fuse, Plastic fuse holders (optional), Iron clad isolators, MCB style isolators, Single phase MCB, Single-phase wire, wiring cable.

Demonstration of domestic wiring involving two MCB, two piano key switches, one incandescent lamp, one LED lamp and plug point.

Simple wiring exercise to be executed to understand the basic electrical circuit.

Simple soldering exercises to be executed to understand the basic process of soldering.

Fabrication of a single-phase full wave rectifier with a step down transformer using four diodes and electrolytic capacitor and to find its volt-ampere characteristics to understand basic electronic circuit fabrication.

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

Course Outcomes:

On successful completion of the learning sessions of the course, the student will be able to:

CO1	Gain basic knowledge of Workshop Practice and Safety useful for our daily living.
CO2	Identify Instruments of a pattern shop like Hand Saw, Jack Plain, Chisels etc and
	performing operations like such as Marking, Cutting etc used in manufacturing
	processes.
CO3	Gain knowledge of the various operations in the Fitting Shop using Hack Saw,
	various files, Scriber, etc to understand the concept of tolerances applicable in all
	kind of manufacturing.
CO4	Get hands on practice of in Welding and various machining processes which give
	a lot of confidence to manufacture physical prototypes in project works.

CO & PO Mapping:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	2	-	1	3	-	1	1
CO2	2	2	1	1	1	1	1	2	1	1	-	-
CO3	2	-	2	-	-	1 56	-	1	1	1	1	2
CO4	1	1	1	2	1	3	1	3	2	-	-	1

Learning Resources:

- Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Kalpakjian S. and Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.
- 3. Gowri P. Hariharan and A. Suresh Babu,"Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

2nd Semester

Course Code : BS-M201	Category : Basic Science Course						
Course Title : Mathematics - II A	Semester : Second (CSE &IT)						
L-T-P : 3-1-0	Credit: 4						
Pre-Requisites: High School Mathematics and BS-M101							

Module Lectures **Description of Topic** Hours No. Basic Probability: Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the Multinomial 1 11 distribution, Poisson approximation to the Binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality. **Continuous Probability Distributions:** 4 Continuous random variables and their properties, Distribution functions and 2 densities, Normal, Exponential and Gamma densities. **Bivariate Distributions:** 5 Bivariate distributions and their properties, distribution of sums and quotients, 3 Conditional densities, Bayes' rule. **Basic Statistics:** 8 Measures of Central tendency, Moments, Skewness and Kurtosis, Probability 4 distributions: Binomial, Poisson and Normal and evaluation of statistical parameters for these three distributions, Correlation and regression - Rank correlation. **Applied Statistics:** 8 Curve fitting by the method of least squares- fitting of straight lines, second degree 5 parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations. 6 **Small samples:** 4 Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chi-square test for goodness of fit and independence of attributes.

Course Outcomes:

On successful completion of the learning sessions $\rho_{\mathbf{k}}$ the course, the student will be able to:

COURSE OUTCOMES (COs)

CODE	DESCRIPTION
BS-M 201.CO 1	Learn the ideas of probability and random variables, calculate probabilities using conditional probability, rule of total probability and Bayes' theorem.
BS-M 201.CO 2	Illustrate the Various discrete and continuous probability distribution with their properties and their applications in physical and engineering environment.
BS-M 201.CO 3	Understand the basic ideas of statistics with different characterization of a univariate and bivariate data set.
BS-M 201.CO 4	Apply statistical tools for analyzing data samples and drawing inference on a given data set.

CO & PO Mapping:

						-	-	-	-	-	-	-
	PO	PO	РО	РО	PO	РО	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	1	1	-	-	-	-	-	2
CO2	3	3	2	1	2	2	2	-	2	-	1	2
CO3	3	3	1	2	2	-	1	-	2	-	2	1
CO4	3	3	2	2	3	2	-	-	-	-	1	2
Average	3	3	2.67	2.33	2.67	1.67	1.5	-	2	-	1.33	1.75

Learning Resources:

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons
- 3. S. Ross, A First Course in Probability, Pearson Education India
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley.
- 5. John E. Freund, Ronald E. Walpole, Mathematical Statistics, Prentice Hall.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 7. N.G. Das, Statistical Methods (Combined Volume), Tata-McGraw Hill.

Course Code : BS-M202	Category : Basic Science Course						
Course Title : Mathematics - II B	Semester : Second (All stream except CSE & IT)						
L-T-P : 3-1-0	Credit: 4						
Pre-Requisites: High School Mathematics and BS-MH02							

Module No.	Description of Topic	Lectures Hours
	Multivariate Calculus (Integration):	
1	Multiple Integration: Double integrals (Cartesian), change of order of integration	11
	in double integrals, change of variables (Cartesian to Polar), Applications: Areas	
	and volumes, Center of mass and Gravity (constant and variable densities); Triple	
	integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications	
	involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals,	
	vector line integrals, scalar surface integrals, vector surface integrals, Theorems of	
	Green, Gauss and Stokes.	
	First order ordinary differential equations:	
2	Exact, linear and Bernoulli's equations, Equations not of first degree: equations	5
	solvable for p, equations solvable for y, equations solvable for x and Clairaut's	
	type.	
	Ordinary differential equations of higher orders:	
3	Second order linear differential equations with constant coefficients, Use of D-	
	operators, Second order linear differential equations with variable coefficients,	9
	method of variation of parameters, Cauchy-Euler equation; Power series solutions;	
	Legendre polynomials, Bessel functions of the first kind and their properties.	
	Complex Variable - Differentiation	
4	Differentiation of complex functions, Cauchy-Riemann equations, Analytic	
	functions, Harmonic functions, determination of harmonic conjugate, elementary	6
	analytic functions (exponential, trigonometric, logarithmic) and their properties;	
	Conformal mappings, Mobius transformations and their properties.	
	Complex Variable - Integration	
5	Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral	
	formula (without proof), Liouville's theorem and Maximum-Modulus theorem	9
	(without proof); Taylor's series, Zeros of analytic functions, Singularities,	
	Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
	definite integral involving sine and cosine, Evaluation of certain improper integrals	
	using the Bromwich contour.	

Course Outcomes:

The students will be able to:

COURSE OUTCOMES (COs)							
CODE	DESCRIPTION						
BS-M 202.CO 1	Learn the methods for evaluating multiple integrals and their applications to different physical problems.						
BS-M 202.CO 2	Understand different techniques to solve first and second order ordinary differential equations with its formulation to address the modelling of systems and problems of engineering sciences.						
BS-M 202.CO 3	Learn different tools of differentiation and integration of functions of a complex variable that are used with various other techniques for solving engineering problems.						
BS-M 202.CO 4	Apply different types of transformations between two 2-dimensional planes for analysis of physical or engineering problems.						

CO-PO Mapping:

	PO	РО	PO	РО	PO	PO	PO	РО	РО	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	2	2	2	-	-	1	2	2
CO2	3	3	2	2	2	2	-	-	2	-	1	2
CO3	3	3	1	1	2	-	2	-	2	1	-	1
CO4	3	3	2	2	3	2	-	-	-	-	2	2
Average	3	3	2	1.75	2.25	2	2	-	2	1	1.67	1.75

Learning Resources:

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. E. L. Ince, Ordinary Differential Equations, Dover Publications.
- 8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, Mc-Graw Hill.

Department of Electrical Engineering

Course Code : ES-CS201	Category : Engineering Science Courses				
Course Title : Programming for Problem Solving	Semester : Second				
L-T-P : 3-0-0	Credit:3				
Pre-Requisites:					

Detailed contents

Unit 1: Introduction to Programming (4 lectures)

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.) - (1 lecture).

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm:

Flowchart/Pseudocode with examples. (1 lecture)

From algorithms to programs; source code, variables (with data types) variables and memory

locations, Syntax and Logical Errors in compilation, object and executable code- (2 lectures)

Unit 2: Arithmetic expressions and precedence (2 lectures)

Unit 3: Conditional Branching and Loops (6 lectures)

Writing and evaluation of conditionals and consequent branching (3 lectures)

Iteration and loops (3 lectures)

Unit 4: Arrays (6 lectures)

Arrays (1-D, 2-D), Character arrays and Strings

Unit 5: Basic Algorithms (6 lectures)

Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

Unit 6: Function (5 lectures)

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

Unit 7: Recursion (4 -5 lectures)

Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

Unit 8: Structure (4 lectures)

Structures, Defining structures and Array of Structures

Unit 9: Pointers (2 lectures)

Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation)

Unit 10: File handling (only if time is available, otherwise should be done as part of the lab)

Course Outcomes:

The student will learn

COs	CO Statement
CS 201.1	Students will be able to <i>describe</i> the meaning of system of numbers, logic gates and the basic
	anatomy of a Computer.
CS 201.2	Language like; constants, variables, operators, operator precedence etc., and <i>identify</i> the use of
	data types and C statements and <i>classify</i> the statements.
	Students will be able to <i>organize</i> the statements in appropriate order to <i>prepare</i> a complete
CS 201.3	program that solves a specific problem and analyze a program to point out the bugs that might be
	present in it and change it to achieve the goal.
CS 201 4	Students will be able to construct the final program and create the executable module for
CS 201.4	execution purpose.

CO-PO Mapping:

В	Basic Computation & Principles of Computer Programming(CS201)												
C0'8	PO'S												
05	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	
CS 201.1	_	_	3	2	1	_	2	3	1	_	2	2	
CS 201.2	1	3	2	2	_	2	_	3	2	3	2	2	
CS 201.3	3	2	1	2	_	2	3	2	2	2	2	3	
CS 201.4	3	2	3	3	2	2	2	1	2	2	3	_	
Average	2.33	2.33	2.25	2.25	1.5	2.00	2.33	2.25	2.33	2.33	2.25	2.33	

Learning Resources:

- 1. R. S. Salaria, Computer Concepts and Programming in C, Khanna Publishers
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 3. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
- 4. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

Course Code : ES-CS291	Category : Engineering Science Courses
Course Title : Programming for Problem Solving	Semester : Second
L-T-P : 0-0-4	Credit:2
Pre-Requisites:	

The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:

- Lab 2: Simple computational problems using arithmetic expressions
- **Tutorial 3:** Branching and logical expressions:

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation, numerical integration): Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

Tutorial 12: File handling:

Lab 12: File operations

Course Outcomes:

COs	CO Statement
CS 291.1	Students will be able to <i>define</i> the specifications like input and output relating to a
	particular problem and <i>describe</i> the algorithm that <i>solves</i> the problem.
CS 201 2	Students will be able to constructeach of the modules of aprogram by restating the
CS 291.2	steps of the algorithm using functions in the framework of C language.
CS 291.3	Students will be able to create the program by using the functions and execute the
	program.
CS 291.4	Students will be able to <i>point out</i> the bugs if any, and modify the program to <i>solve</i> the
	problem.

CO-PO Mapping:

Basic Computation & Principles of Computer Programming(CS291)															
0.010		PO'S													
05	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CS 291.1	3	3	2	2	2	3	-	-	-	-	2	2			
CS 291.2	2	2	-	2		2	2	2		1	2	2			
CS 291.3	2	2	2	3	1	3	2	3	1	1	3	2			
CS 291.4	1	1	-	1	1	2	-	1	1	1	1	2			
Average	2	2	2	2	1.33	2.5	2	2	1	1	2	2			

Department of Electrical Engineering

Course Code : HM-HU201	Category : Humanities and Social Sciences including Management courses
Course Title : English	Semester : Second
L-T-P : 2-0-0	Credit:2
Pre-Requisites:	

Detailed contents

1. Vocabulary Building

1.1 The concept of Word Formation: Compounding, Backformation, Clipping, Blending.

- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations: Acronyms

2. Basic Writing Skills

2.1 Sentence Structures & Types: Simple, Compound, Complex

2.2 Use of phrases and clauses in sentences: Transformation of sentences, active, passive, narration

2.3 Importance of proper punctuation

2.4 Creating coherence: Arranging paragraphs & Sentences in logical order

2.5 Creating Cohesion: Organizing principles of paragraphs in documents

2.6 Techniques for writing precisely

3. Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

4. Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion

5. Writing Practices

- 5.1 Comprehension
- 5.2 Précis Writing
- 5.3 Essay Writing
- 5.4 Business Letter, Cover Letter & CV; E-mail

Learning Resources:

(i) Kulbushan Kumar, R S Salaria,Effective Communication Skills, Khanna Publishing House, Delhi.

- (ii) Practical English Usage. Michael Swan. OUP. 1995.
- (iii) Remedial English Grammar. F.T. Wood. Macmillan.2007

Department of Electrical Engineering

- (iv) On Writing Well. William Zinsser. Harper Resource Book. 2001
- (v) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (vi) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vii) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- (viii) Universal English Prof. Prasad Kataria Publications, 2019.

(ix) "Communication Skills for Professionals"-Nira Konar, Prentice Hall of India 2nd edition, New Delhi,

2011

(x) Gajendra Singh Chauhan, Smita Kashiramka and L. Thimmesha. Functional English. Cengage , 2019.

Course Outcomes: Student will be able to:

COURSE OUTCOMES (COs)					
CODE	DESCRIPTION				
HMHU201.CO 1	Revise the basic grammar of English language.				
HMHU 201.CO 2	Learn appropriate use of English language to enhance knowledge on building				
	vocabulary and framing sentences.				
HMHU 201.CO 3	Learn and incorporate sensible style in Technical writing.				
HMHU201.CO 4	Acquire proficiency in English language for comprehensive excellence in				
	reading, listening, writing and speaking.				

CO- PO Mapping:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	2	-	-	-	-	-	-	1	3	-	2
CO2	-	2	-	1	-	1	-	-	2	3	-	2
CO3	-	2	-	1	-	1	1	2	1	3	-	2
CO4	-	2	-	1	-	1	1	1	2	3	1	2
Average	-	2	-	1	-	1	1	1.5	1.5	3	1	2

Course Code : HM-HU291	Category : Humanities and Social Sciences including Management courses		
Course Title : Language Laboratory	Semester : Second		
L-T-P : 0-0-2	Credit:1		
Pre-Requisites:			

1) Honing 'Listening Skill' and its sub skills through Language Lab Audio device; 3P

 $2\mathbf{P}$

- 2) Honing 'Speaking Skill' and its sub skills
- 3) Helping them master Linguistic/Paralinguistic features (Pronunciation/Phonetics/
 Voice modulation/ Stress/ Intonation/ Pitch & Accent) of connected speech
 2P
- 4) Honing 'Conversation Skill' using Language Lab Audio -Visual input;
 Conversational Practice Sessions (Face to Face / via Telephone, Mobile phone &

	Role Play Mode)	2P
5)	Introducing 'Group Discussion' through audio -Visual input and acquainting them	
	with key strategies for success	2P
6)	G D Practice Sessions for helping them internalize basicPrinciples	
	(turn- taking, creative intervention, by using correct body language, courtesies &	
	other soft skills) of GD	4P
7)	Honing 'Reading Skills' and its sub skills using Visual / Graphics/	
	Diagrams /Chart Display/Technical/Non Technical Passages	
	Learning Global / Contextual / Inferential Comprehension;	2P
8)	Honing 'Writing Skill' and its sub skills by using	
	Language Lab Audio -Visual input; Practice Sessions	2P

Course Outcomes

Student will be able to:

COURSE OUTCOMES (COs)					
CODE	DESCRIPTION				
HMHU291.CO 1	Get introduced to professional application of English Language with				
	emphasis on listening and speaking skills through language lab aids.				
	Practice sessions on pronunciation, intonation, voice modulation, stress,				
HMHU 291.CO 2	pitch and accent and developing communicative skills with special focus				
	on Group Discussion.				
HMHU 291.CO 3	Master effective reading and writing style through Language Lab aids.				
HMHU291.CO 4	Ensure proficiency in reading, listening comprehension, technical writing				
	and in speaking.				

CO-PO Mapping:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	-	-	-	1	-	-	-	2	3	-	2
CO2	-	2	-	1	-	1	-	1	3	3	-	2
CO3	-	2	-	1	1	1	1	1	2	3	-	2
CO4	-	2	-	1	1	1	1	1	3	3	-	2
Average	-	2	-	1	1	1	1	1	2.5	3	-	2

3rd Semester

Name	e of the course	ELECTRIC CIRCUIT THEORY				
Cours	se Code: PC-EE 301	Semester: 3 rd				
Dura	tion: 6 months	Maximum Marks: 100				
Teach	ning Scheme	Examination Scheme				
Theor	ry: 3 hrs/week	Mid Semester Exam: 15 M	larks			
Tutor	rial: 1 hr/week	Assignment & Quiz: 10 M	larks			
Pract	ical: 2 hrs/week	Attendance: 05 l	Marks			
Credi	it Points: 4+1	End Semester Exam: 70 M	arks			
	Object	ctive:				
1.	To understand the structure and properties	of different type of electrical	circuits, r	networks		
	and sources.					
2.	To apply different mathematical tools & to	echniques for analyzing electri	cal netwo	orks.		
3.	To apply circuit analysis techniques to sin	nplify electrical networks				
4.	To solve problems of electrical circuits					
	Pre-Re	equisite				
1.	Basic Electrical Engineering (ES-EE-101)					
2.	Mathematics (BS-M-102, Bs-M202)					
Unit	Content		Hrs	Marks		
1	Introduction: Continuous & Discrete, Fix	3				
	and Nonlinear, Lumped and Distributed,					
	and systems. Independent & Dependent sources, Step, Ramp, Impulse,					
	Sinusoidal, Square, Saw tooth signals					
2	Graph theory and Networks equations:	Concept of Tree, Branch,	4			
	Tree link, Incidence matrix, Tie-set matrix	x and loop currents, Cut set				
	matrix and node pair potentials. Duality, S	Solution of Problems				
3	Coupled circuits: Magnetic coupling, Po	plarity of coils, Polarity of	3			
	induced voltage, Concept of Self and Mut	ual inductance, Coefficient				
	of coupling, Modeling of coupled circuits,	Solution of problems.				
4	Laplace transforms: Impulse, Step & Si	nusoidal response of RL,	8			
	RC, and RLC circuits. Transient analysis	of different electrical circuits				
	with and without initial conditions. Conce	ept of Convolution theorem				
	and its application. Solution of Problems with DC & AC sources.					
5	Fourier method of waveform analysis:	Fourier series and Fourier	6			
	Transform (in continuous domain only					
	analysis, Solution of Problems					
6	Network Theorems: Formulation of ne	etwork equations, Source	8			
	n's, Norton's & Maximum					
	power transfer theorem. Millman's theo	rem and its application in				
	three phase unbalanced circuit analysis. S	olution of Problems with DC				
	& AC sources.					

7	Two port networks analysis: Open circuit Impedance & Short circuit	4	
	Admittance parameter, Transmission parameters, Hybrid parameters		
	and their inter relations. Driving point impedance & Admittance.		
	Solution of Problems		
8	Filter Circuits: Analysis and synthesis of Low pass, High pass, Band	4	
	pass, Band reject, All pass filters (first and second order only) using		
	operational amplifier. Solution of Problems		

Text books:

- 1. Networks & Systems, Ashfaq Husain, Khanna Book Publishing, New Delhi
- 2. Networks and Systems, D. Roy Chowdhury, New Age International Publishers
- 3. Network Analysis and Synthesis, C.L. Wadhwa, New Age International Publishers
- 4. Circuit and Networks: Analysis and synthesis, A. Sudhakar & S.S. Palli4th edition. Tata Mc Graw Hill Education Pvt. Ltd.
- 5. Circuit theory, Dr. Abhijit Chakrabarty, Dhanpat Rai & Co Pvt. Ltd.

Reference books

- 1. Network Analysis, M.E. Valkenburg, Pearson Education .
- 2. Fundamental of Electric circuit theory, D. Chattopadhay & P.C. Rakshit, S. Chand
- 3. Engineering Circuit Analysis, W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill Company.
- 4. Problems and Solutions of Electric Circuit Analysis, R.K. Mehta & A.K. Mal, CBS, New Delhi

Course Outcome:

Course outcome	Statement						
codes							
PC-EE-301.1	Identify various signals, sources and systems.						
PC-EE-301.2	Explain different engineering problems by the application of various theorems and methods.						
PC-EE-301.3	Construct mathematical model of a given electric circuit using modern engineering tools and solve it using technique of domain transformation for practical related problems.						
PC-EE-301.4	Measure different network problems using graph theory concept						

PC-EE-301.5	Design the given electric circuit in terms of two port network,
	graph theory and filters and engage in life-long learning.

CO-PO Mapping:

COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12
PC-EE- 301.1	3	3	3	2	2	1	-	-	-	-	-	1
PC-EE- 301.2	3	3	3	2	2	1	-	-	-	-	-	1
PC-EE- 301.3	3	3	3	2	2	1	-	-	-	-	-	1
PC-EE- 301.4	3	3	3	2	2	1	-	-	-	-	-	1
PC-EE- 301.5	3	3	3	2	2	1	-	-	-	-	-	1
Average	3	3	3	2	2	1	-	-	-	-	-	1

Name	e of the course	Electric Circuit Theory				
Cours	se Code:PC-EE391	Semester: 3 rd				
Durat	tion: 6 months	Maximum marks:100				
Teach	ning Scheme	Examination scheme:				
Theor	ry: Nil	Continuous Internal Assessment:40				
Tutor	rial: Nil	External Assessment: 60				
Pract	ical: 2 hrs/week					
Credi	it Points:1					
	Laboratory Experiments:					
1.	Transient response of R-L and R-C network: simulation with software & hardware					
2.	Transient response of R-L-C series and par	callel circuit: simulation with software &				
	hardware					
3.	Determination of Impedance (Z) and Admi	ittance (Y) parameter of two-port network:				
	simulation & hardware.					
4.	. Frequency response of LP and HP filters: simulation & hardware.					
5.	Frequency response of BP and BR filters: simulation & hardware.					

6.	Generation of Periodic, Exponential, Sinusoidal, Damped Sinusoidal, Step, Impulse, Ramp signal using MATLAB in both discrete and analog form.
7.	Determination of Laplace transform and Inverse Laplace transform using MATLAB.
8.	Amplitude and Phase spectrum analysis of different signals using MATLAB.
9.	Verification of Network theorems using software & hardware

Course Outcome:

PCEE391.1	Remember electric circuits, signals and algorithms using mathematical tools.
PCEE391.2	Demonstrate transient analysis of electric circuits frequency response characteristics of Filter
	circuits
PCEE391.3	Analyse electric circuits, signals and algorithms using mathematical tools.
PCEE391.4	Construct circuits with appropriate instruments and safety precautions.

CO-PO Mapping:

COs	PROC	PROGRAM OUTCOMES(POs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PCEE391.1	2	3	-	1	3	-	-	-	1	1	-	-
PCEE 392.2	2	1	2	1	3	-	-	-	1	1	-	-
PCEE391.3	2	3	-	1	3	-	-	-	1	1	-	-
PCEE 392.4	2	1	2	1	3	-	-	-	1	1	-	-
AVERAGE	2	2	2	1	3	I	1	1	1	1	-	1

Name of the course	ame of the course ANALOG ELECTE				
Course Code: PC-EE 302	Semester: 3 rd				
Duration: 6 months	Maximum Marks: 1	00			
Teaching Scheme	Examination Schem	e			
Theory: 3 hrs/week	Mid Semester Exam:	15 Marks			
Tutorial: 0 hr/week	Assignment & Quiz:	10 Marks			
Practical: 2 hrs/week	Attendance:	05 Marks			
Credit Points: 3+1	End Semester Exam:	70 Marks			
Objective:					
1. To understand the structure and	properties of different compone	nts of analog e	lectronics.		
2. To explain principle of operation	on of analog electronics compon	ents and circuit	ts.		
3. To understand the application of	f operational amplifier				
4. To solve problems of analog el	lectronic components and circuit	ts			
5. To analyze amplifiers, oscillator	s and other analog electronic cir	cuits.			
Pre-Requisite					
1. Physics (10+2)					
Unit Con	Hrs	Marks			
1 Filters & Regulators: Review	4				
rectifier, Capacitor filters, • -se					
and shunt voltage regulator, per					

2	BJT circuits: Structure and I-V characteristics of a BJT; BJT	8
	as a switch. BJT as an amplifier: small-signal model, biasing	
	circuits, current mirror; common-emitter, common-base and	
	common-collector amplifiers; Small signal equivalent circuits,	
	high-frequency equivalent circuits	
3	MOSFET circuits: MOSFET structure and I-V	8
	characteristics. MOSFET as a switch. MOSFET as an	
	amplifier: small-signal model and biasing circuits, common-	
	source, common-gate and common-drain amplifiers; small	
	signal equivalent circuits - gain, input and output impedances,	
	trans-conductance, high frequency equivalent circuit.	
4	Feed back amplifier & Oscillators: Concept of Feed back,	5
	Negative & Positive feedback, Voltage/Current, Series/Shunt	
	feedback, Berkhausen criterion, Colpit, Hartley's, Phase shift,	
	Wien bridge, & Crystal oscillators.	
5	Operational amplifier: Ideal OPAMP, Differential amplifier,	5
	Constant current source (Current mirror etc), Level shifter,	
	CMRR, Open & closed loop circuits, importance of feedback	
	loop (positive & negative), inverting & non-inverting	
	amplifiers, Voltage follower/Buffer circuits.	
6	Application of Operational amplifiers: Adder, Integrator &	5
	Differentiator, Comparator, Schmitt Trigger, Instrumentation	
	Amplifier, Log & Antilog amplifier, Trans-conductance	
	multiplier, Precision rectifier, Voltage to current &Current to	
	voltage converter.	
7	Power amplifier: Class A, B, AB, C, Conversion efficiency	2
8	Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable	2
9	Special function circuits: VCO & PLL	2
· ·	*	-

Text books:

- 1. Malvino-Electronic Principles, 6/e, TMH
- 2. Nagrath, Electronics: Analog and Digital, PHI, 2004
- 3. Mottershed, Electronics Devices & Circuits, Wiley Eastern
- 4. Millman & Halkias Integrated Electronics, Tata McGraw Hill.
- 5. Gayakwad R.A -- OpAmps and Linear IC's, 4/e, Pearson-PHI
- 6. Franco—Design with Operational Amplifiers & Analog Integrated Circuits , 3/e,TMH
- 7. Coughlin and Drisscol Operational Amplifier and Linear Integrated Circuits -Pearson Education Asia.
- 8. A.K. Maini, Analog Electronics, Khanna Publishing House, 2019
- 9. L.K. Maheswari, Analog Electronics, Laxmi Publications

Reference books

- 1. Nagchoudhuri , Microelectronic Devices, 1/e, Pearson Education, 2001
- 2. Natarajan, Microelectronics: Analysis & Design, 1/e 2005, TMH
- 3. Maheshwari and Anand , Analog Electronics, PHI
- 4. Boyle'stead, Nashelsky: & Kishore, Electronic Devices & Circuit theory, 1/e, PHI/Pearson.
- 5. Millman & Halkias: Basic Electronic Principles; TMH.
- 6. Tobey & Grame Operational Amplifier: Design and Applications, Mc Graw

Hill.

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe analog electronic components and analog electronics circuits, filters, regulators
- 2. compute parameters and operating points of analog electronic circuits.
- 3. distinguish different types amplifier and different types oscillators based on application.

4. construct operational amplifier based circuits for different applications.

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	2	2	2	2	1	1	2	2	1	1	-	2
CO2	2	2	2	2	1	2	2	-	2	1	1	1
CO3	2	1	1	2	1	-	1	2	-	-	2	2
CO4	2	2	2	2	2	1	2	1	2	2	-	2

Name	e of the course	Analog electronic laboratory					
Cours	se Code:PC-EE392	Semester: 3rd					
Durat	tion: 6 months	Maximum marks:100					
Teach	ning Scheme	Examination scheme:					
Theor	ry: Nil	Continuous Internal Assessment: 40					
Tutor	ial: Nil	External Assessment: 60					
Practi	cal: 2 hrs/week	Credit Points:1					
	Laboratory E	xperiments:					
1.	Study of ripple and regulation characterist	ics of full wave rectifier with and without					
capacitor filter.							
2.	2. Study of Zener diode as voltage regulator.						
3.	Study of characteristics curves of B.J.T &	F.E.T .					
4.	Construction of a two-stage R-C coupled a	mplifier & study of it's gain & Bandwidth.					
5.	Study of class A, C & Push-Pull amplifiers						
6.	Study of timer circuit using NE555 & conf	iguration for monostable & astable and					
	bistable multivibrator						
7.	Study of Switched Mode Power Supply &	construction of a linear voltage regulator using					
	regulator IC chip						
8.	Construction of a simple function generato	r using IC.					
9.	Realization of a V-to-I & I-to-V converter	using Op-Amps.					
10.	Realization of a Phase Locked Loop using	Voltage Controlled Oscillator (VCO).					
11.	Study of D.A.C & A.D.C.						

Course Outcome: After completion of this course, the learners will be able to

CO1: set up testing procedure and select proper instruments to evaluate performance characteristics of electronic circuit to analyze their operation different operating conditions.

CO2: Practice different types of wiring and instruments connections keeping in mind technical, safety issues.

CO3: Prepare professional quality textual and graphical presentations of laboratory data and Computational results, incorporating accepted data analysis.

SUBJECT	COs	PROGRAM OUTCOMES (POs)												
CODE		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
PC-EE- 392	CO1	2	2	1	1	-	-	2	1	2	-	1	1	
	CO2	2	1	2	1	-	1	2	2	1	-	-	1	
	CO3	2	2	1	2	1	-	3	1	2	-	1	1	

Name	e of the course	ELECTRO MAGNETIC FIELD THEORY					
Cours	se Code: PC-EE 303	Semester: 3rd					
Durat	tion: 6 months	Maximum Marks: 100					
Teach	ning Scheme	Examination Scheme					
Theor	ry: 3 hrs/week	Mid Semester Exam: 15	5 Marks				
Tutor	ial: 0 hr/week	Assignment & Quiz: 10	Marks				
Practi	ical: 0 hrs/week	Attendance: 0.	5 Marks				
Credi	t Points: 3	End Semester Exam: 70) Marks				
	Obje	ctive:					
1.	To understand the basic mathematical to	ols to deal with Electromag	gnetic field	Problem.			
2.	To understand properties and application	of Electric and magnetic fi	eld.				
3.	To analyze electromagnetic wave propaga	ation					
4.	To solve problem related to Electromagne	etic field.					
	Pre-Re	equisite					
1.	Basic Electrical Engineering (ES-EE-10)	1)					
2.	Mathematics (BS-M-102, Bs-M202)						
3.	Physics (BS-PH 101)						
Unit	Content		Hrs	Marks			
1	Introduction: Co-ordinate systems and tra	ansformation, Cartesian	4				
	coordinates, Circular cylindrical coordinates, Spherical						
coordinates & their transformation. Differential length, area and							
	volume in different coordinate systems.	Solution of problems					

Department of Electrical Engineering

2	Introduction to Vector calculus: DEL operator, Gradient of a	4	
	scalar, Divergence of a vector & Divergence theorem, Curl of a		
	vector & Strokes theorem, Laplacian of a scalar, Classification of		
	vector fields, Helmholtz's theorem. Solution of problems		
3	Electrostatic field: Coulomb's law, field intensity, Gauss's law,	8	
	Electric potential and Potential gradient, Relation between E and		
	V, an Electric dipole and flux lines. Energy density in		
	electrostatic field. Boundary conditions: Dielectric-dielectric,		
	Conductor -dielectric, Conductor-free space. Poisson's and		
	Laplace's equation, General procedure for solving Poisson's and		
4	Magneto static fields: Biot- savart law, Ampere's circuit law,	8	
	Magnetic flux density, Magnetic static and Vector potential,		
	Forces due to magnetic field, Magnetic torque and moments,		
	Magnetisation in material, Magnetic boundary condition,		
	Inductor and Inductances, Magnetic energy, Force on magnetic		
	material. Solution of problems Magnetisation in material,		
	Magnetic boundary condition,		
	Inductor and Inductances, Magnetic energy, Force on magnetic		
	material. Solution of problems		
5	Electromagnetic fields: Faraday's law, Transformer and	6	
	motional emf, Displacement current, Maxwell's equations, Time		
	varying Potential, Time harmonic fields. Solution of problems		
6	Electromagnetic wave propagation: Wave equation, Wave	6	
	propagation in lossy dielectric, Plane waves in loss less dielectric,		
	Plane wave in free space, Plane wave in good conductor, Skin		
	effect, Skin depth, Power & Poynting vector, Reflection of a		
	plane wave at normal incidence, reflection of a plane wave at		
	oblique incidence, Polarisation. Solution of problems		
7	Transmission line: Concept of lump & distributed parameters,	4	
	Line parameters, Transmission line equation & solutions,		
	Physical significance of solutions, Propagation constants,		
	Characteristic impedance, Wavelength, Velocity of propagation.		
	Solution of problems		

Text books:

1. Elements of Electromagnetic, Mathew N.O. Sadiku, 4th edition, Oxford University press.

- 2. Engineering Electromagnetic, W.H. Hyat & J.A. Buck, 7th Edition, TMH
- 3. Theory and problems of Electromagnetic, Edminister, 2nd Edition, TMH
- 4. Electromagnetic field theory fundamentals, Guru & Hizroglu, 2nd edition, Cambridge University

Course Outcome:

Course Name: PC-EE-303

Course outcome codes	Statement								
PC-EE-303.1	To examine quantities from one coordinate system to								
	another with the implementation of modern engineering tools.								

Department of Electrical Engineering

	•
PC-EE-303.2	To apply different operators and theorems of filed theory in complex engineering problems
	complex engineering problems.
PC-EE-303.3	To analyse problems related to different fields in vector
	forms and able to develop project and research in the area.
PC-EE-303.4	To formulate the concept of EM wave propagation and
	transmission lines to solve professional engineering related
	problems.

	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
PC-EE- 303.1	3	2	2	2	3	1	2	-	-	1	-	2	3	2
PC-EE- 303.2	3	3	3	2	2	1	2	-	-	1	1	2	2	3
PC-EE- 303.3	3	3	3	3	2	1	2	-	2	2	2	3	3	3
PC-EE- 303.4	3	3	3	3	3	2	3	-	2	2	2	3	3	3
Avera ge	3	3	3	2	2	1	2	-	1	1	1	1	3	3

Name of the course	ENGINEERING MECHANICS				
Course Code: ES-ME 301	Semester: 3rd				
Duration: 6 months	Maximum Marks: 100				
Teaching Scheme	Examination Scheme				
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks				
Tutorial: 0 hr/week	Assignment & Quiz: 10 Marks				
Practical: 0 hrs/week	Attendance: 05 Marks				
Credit Points: 3	End Semester Exam: 70 Marks				
Objective:					
1. To understand the basic mathematical tools to	deal with the physical bodies.				
2. To learn different mathematical techniques to a	nalyze physical bodies.				
2. To learn analysis techniques of rigid bodies.					
2. To solve problem of general motion.					
Pre-Requisite					
1. Physics (BS-PH-101)					
2. Mathematics (BS-M102, BS-M202)					

Department of Electrical Engineering

Unit	Content	Hrs	Marks
1	Introduction to vectors and tensors and co-ordinate	5	
	systems		
	Introduction to vectors and tensors and coordinate systems;		
	Vector and tensor algebra; Indical notation; Symmetric and		
	anti-symmetric tensors; Eigenvalues and Principal axes.		
2	Three-dimensional Rotation	4	
	Three-dimensional rotation: Euler's theorem, Axis-angle		
	formulation and Euler angles; Coordinate transformation of		
	vectors and tensors.		
3	Kinematics of Rigid Body	6	
	Kinematics of rigid bodies: Dentition and motion of a rigid		
	body; Rigid bodies as coordinate systems; Angular velocity of		
	a rigid body, and its rate of change; Distinction between two-		
	and three dimensional rotational motion; Integration of angular		
	velocity to find orientation; Motion relative to a rotating rigid		
	body: Five term acceleration formula.		
4	Kinetics of Rigid Bodies	5	
	Kinetics of rigid bodies: Angular momentum about a point;		
	Inertia tensor: Dentition and computation, Principal moments		
	and axes of inertia, Parallel and perpendicular axes theorems;		
	Mass moment of inertia of symmetrical bodies, cylinder,		
	sphere, cone etc., Area moment of inertia and Polar moment of		
	inertia, Forces and moments; Newton-Euler's laws of rigid		
	body motion.		
5	Free Body Diagram (1 hour)	1	
	Free body diagrams; Examples on modelling of typical		
	supports and joints and discussion on the kinematic and kinetic		
	constraints that they impose.		
6	General Motion	9	
	Examples and problems. General planar motions. General 3-D		
	motions. Free precession, Gyroscopes, Rolling coin.		
7	Bending Moment	5	
	Transverse loading on beams, shear force and bending moment		
	in beams, analysis of cantilevers, simply supported beams and		
	overhanging beams, relationships between loading, shear force		
	and		
	bending moment, shear force and bending moment diagrams.		
8	Torsional Motion	2	
	Torsion of circular shafts, derivation of torsion equation, stress		
	and deformation in circular and hollow shafts.		
9	Friction	3	
	Concept of Friction; Laws of Coulomb friction; Angle of		
	Repose; Coefficient of friction.		

Text books:

- 1. J. L. Meriam and L. G. Kraige, "Engineering Mechanics: Dynamics", Wiley, 2011.
- 2. M. F. Beatty, "Principles of Engineering Mechanics", Springer Science & Business Media, 1986.
- 3. Manoj K. Harbola, "Engineering Mechanics", Cengage Learning India Pvt.

Ltd, 2018

- 4. D.S. Bedi & M.P. Poonia, "Engineering Mechanics", Khanna Publishing House, 2019
- 5. R.S. Khurmi, "Engineering Mechanics", S.Chand Publications
- 6. R.K. Bansal, "Engineering Mechanics", Laxmi Publications

Course Outcome:

Course outcome codes	Statement									
ES-ME 301.1	Explain the co-ordinate system, principle of three									
	dimensional rotation, kinematics and kinetics of rigid bodies									
ES-ME 301.2	Elaborate the theory of general motion, bending moment,									
	torsional motion and friction.									
ES-ME 301.3	Develop free body diagram of different arrangements.									
ES-ME 301.4	Solve problems with the application of theories and principle									
	of motion, friction and rigid bodies.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	3	3	2	1	-	1	2	2	2	3
CO2	3	3	3	3	2	2	1	1	2	2	2	3
CO3	3	3	3	2	-	-	-	-	1	1	2	2
CO4	3	3	3	3	1	1	1	-	1	2	2	3
Average	3	3	3	3	1.67	1	2	1	1.5	2.33	2	2.75

Name of the course		MATHEMATICS-III				
Cours	se Code: BS- M 301	Semester: 3rd				
Durat	tion: 6 months	Maximum Marks: 100				
Teach	ning Scheme	Examination Schem	e			
Theor	ry: 3 hrs/week	Mid Semester Exam:	15 Marks			
Tutor	ial: 0 hr/week	Assignment & Quiz:	10 Marks			
Practi	ical: 0 hrs/week	Attendance:	05 Marks			
Credi	t Points: 3	End Semester Exam:	70 Marks			
Objec	ctive:					
1.	To understand Probability theory required	an Electrical Engineer	to apply in pr	ofession.		
2.	To understand numerical methods to so	lve engineering proble	em			
3.	To understand basics of Z transform to s	solve engineering prob	olems.			
Pre-R	Requisite					
1.	Mathematics (10+2)					
Unit	Content		Hrs	Marks		
1	Probability:					
	Basic Probability Theory: Classical	definition and its				
	limitations. Axiomatic definition. Some e	elementary deduction:				
	i) P(O)=0, ii) 0 <p(a)<1, iii)="" p(a')="1-I</td"><td>P(A) etc. where the</td><td>1</td><td></td></p(a)<1,>	P(A) etc. where the	1			
	symbols have their usual meanings. Frequ	uency interpretation				
	of probability	j				
	of produbility.					
	Addition rule for 2 events (proof) & its as	tension to more then				
	2 avants (statement only) Palated pro	blams. Conditional	3			
	2 events (statement only). Related plo	sion to more than 2	5			
	probability & independent events. Extens	sion to more than 2				
	events (pair wise & mutual independen	ice). Multiplication				
	Rule. Examples. Baye's theorem (stateme	ent only) and related				
	problems.					
	Random Variable & Probability Distributi	ons. Expectation:				
	Definition of random variable. Continuous	s and discrete	-			
	random variables. Probability density func	ction & probability	2			
	mass function for single variable only. Distribution	ion function				
	and its properties (without proof). Examples. De	finitions of				
	Expectation & Variance, properties & examples.					
	Some important discrete distributions: Binomi	al & Poisson				
	distributions and related problems. Some impor	tant continuous				
	distributions: Uniform Exponential Normal dis	tributions and	2			
	related problems. Determination of Moon &	Variance for				
	Rinomial Doisson & Uniform distributions only					
		•				

Department of Electrical Engineering

	Numerical Methods:		
	Approximation in numerical computation: Truncation and		
	rounding errors, Fixed and floating-point arithmetic,	4	
	Propagation of errors.	4	
	Internalistican Norman formula discussed internalistica		
	Interpolation: Newton forward/backward interpolation,	5	
	Lagrange's and Newton's divided difference interpolation.	5	
	Numerical integration: Transzoidal rule Simpson's 1/2 rule	3	
	Numerical integration. Trapezoidal fuie, Simpson S 1/5 fuie,	C	
	Expression for corresponding error terms.		
3	Z transform:		
	Sequence, Representation of sequence, Basic operations on		
	sequences, Z-transforms, Properties of Z-transforms, Change		
	of scale, Shifting property, Inverse Z-transform, Solution of	4	
	difference equation, Region of convergence.		

Text books:

- 1. Lipschutz S., and Lipson M.L.: Probability (Schaum's Outline Series), TMH.
- 2. C.Xavier: C Language and Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).
- 6. Hwei P Hsu, " Signal and system", (Schaum's Outline Series), Mc Graw Hill education.

Reference books

- 1. Balagurusamy: Numerical Methods, Scitech.
- 2. R.S. Salaria: Numerical Methods, Khanna Publishing House.
- 3. S.S. Sashtry: Numerical Methods, PHI
- 4. Baburam: Numerical Methods, Pearson Education.
- 5. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.
- 6. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.
- 7. Srimanta Pal: Numerical Methods, OUP.

Course Outcome:

COURSE OUTCOMES (COs)					
CODE	DESCRIPTION				
BS-M 101.CO 1	Apply the concept and techniques to differential and integral calculus to determine curvature and evaluation of different types of improper integrals				
	Understand the domain of applications of mean value theorems to engineering				
BS-M 101.CO 2	problems.				
PS M 101 CO 3	Learn different types of matrices, concept of rank, methods of matrix inversion				
DS-W1101.CO 5	and their applications.				
BS-M 101.CO 4	Understand linear spaces, its basis and dimension with corresponding				
	applications in the field of computer science.				

Department of Electrical Engineering

	Learn and apply the concept of eigen values, eigen vectors, diagonalization of
BS-M 101.CO 5	matrices and orthogonalization in inner product spaces for understanding
	physical and engineering problems.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3	2	2	2	1	-	2	-	2	2
CO2	3	3	2	2	2	2	2	-	1	-	-	1
CO3	3	3	2	2	3	2	2	-	2	-	2	2
CO4	3	3	2	2	3	2	2	-	-	-	1	2
CO5	3	3	3	2	2	1	-	-	-	-	2	1
Average	3	3	2.4	2	2.4	1.8	1.75	-	1.67	_	1.75	1.6

Name	e of the course	Numerical Methods laboratory		
Course Code: PC-CS 391		Semester: 3 rd		
Durat	tion: 6 months	Maximum marks:100		
Teach	ning Scheme	Examination scheme:		
Theor	ry: Nil	Continuous Internal Assessment:40		
Tutor	ial: Nil	External Assessment: 60		
Practi	ical: 2 hrs/week			
Credi	t Points:1			
	Laboratory E	xperiments:		
1.	Assignments on Newton forward /backwar	d, Lagrange's interpolation.		
2.	Assignments on numerical integration usin	g Trapezoidal rule, Simpson's 1/3 rule,		
	Weddle's rule.			
3.	Assignments on numerical solution of a system of linear equations using Gauss			
	elimination and Gauss-Seidel iterations			
4.	Assignments on numerical solution of Algebraic Equation by Regular-falsi and Newton			
	Raphson methods.			
5.	Assignments on ordinary differential equation: Euler's and Runga-Kutta methods.			
6.	Introduction to Software Packages: Matlab	/ Scilab / Labview / Mathematica.		

Course Outcome:

COURSE OUTCOMES (COs)					
CODE	DESCRIPTION				
PC-CS391:CO1	Solve the problem of Interpolation, Numerical Integration, solution of algebraic and transcendental equation, Linear equation and ordinary Differential Equation.				
PC-CS391:CO2	Find appropriate numerical methods to solve engineering problems.				
PC-CS391:CO3	Use software package to solve numerical problems.				

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	PO 12
										10	11	
CO1	3	2	2	2	1	2	2	-	1	2	2	3
CO2	2	2	2	1	1	2	2	-	2	2	1	2
CO3	3	2	2	1	-	2	2	-	1	1	2	1
Average	2.67	2	2	1.33	1	2	2	-	1.33	1.67	1.67	2

Name	e of the course	BIOLOGY FOR ENGINEERS			
Cours	se Code:BS- 301	Semester: 3rd			
Durat	tion: 6 months	Maximum Marks: 100			
Teach	ning Scheme	Examination Scheme			
Theor	ry: 3 hrs/week	Mid Semester Exam: 15	Marks		
Tutor	ial: 0 hr/week	Assignment & Quiz: 10	Marks		
Practi	cal: 0 hrs/week	Attendance: 05	Marks		
Credi	t Points: 3	End Semester Exam: 70	Marks		
Objec	ctive:				
1.	To introduce modern biology with an e	emphasis on evolution of	biology as	s a multi-	
	disciplinary field.				
2.	To make students aware of application	on of engineering princip	oles in bio	ology and	
L	engineering robust solution inspired by bi	ological examples.			
Pre-R	Requisite				
<u>]</u>	NIL				
Unit	Content		Hrs	Marks	
	Introduction	• • • • • • •			
1	Purpose: To convey that Biology is as	important a scientific	2		
1	discipline as Mathematics, Physics and C	Chemistry. Bring out the	2		
	fundamental differences between science	e and engineering by			
	drawing a comparison between eye and c	camera, Bird flying and			
	aircraft. Mention the most exciting as	pect of biology as an			
	independent scientific discipline. Why we	need to study biology?			
	Discuss how biological observations of 1	8th Century that lead to			
	major discoveries. Examples from Brown	ian motion and the origin			
	of thermodynamics by referring to the	original observation of			
	Robert Brown and Julius Mayor. These e	examples will highlight			
	the fundamental importance of observa	tions in any scientific			
	inquiry	-			
	Classification:				
	Purpose: To convey that classification per	r se is not what biology is			
	all about. The underlying criterion, su	ich as morphological,	3		
	biochemical or ecological be highlighted.	Hierarchy of life forms			
2	at phenomenological level. A comm	on thread weaves this			
	hierarchy Classification. Discuss class	ification based on (a)			
	cellularity- Unicellular or	multicellular (b)			
	ultrastructureprokarvotes or eucarvotes (c) energy and Carbon				
	utilization - Autotrophs, heterotrophs				
	lithotropes (d) Ammonia excretion -	aminotelic, uricotelic			
	ureotelic (e) Habitata- acquatic or t	errestrial (e) Molecular			
	taxonomy- three major kingdoms of life	A given organism can			
	come under different category based or	classification Model			
	organisms for the study of biology come	from different groups			
	E coli S cerevisiae D Melanogaster C	elegance A Thaliana			
	M musculus	eneganice, A. Thanana,			
1	111. 1110500105.		1		

3	Biomolecules Purpose: To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine. Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids.	4	
4	Macromolecular analysis: Purpose: To analyze biological processes at the reductionistic level. Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	5	
5	Metabolism Purpose: The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergonic reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge.	4	
6	Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	3	
7	Immunology Purpose: How does the immune system work? What are the molecular and cellular components and pathways that protect an organism from infectious agents or cancer? This comprehensive course answers these questions as it explores the cells and molecules of the immune system. Immunology- Self vs Non-self, pathogens, human immune system, antigen-antibody reactions.	5	
8	Information Transfer Purpose: The molecular basis of coding and decoding genetic information is universal. Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic	4	
	code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.		

9	Cancer biology Purpose: A basic understanding of cancer biology and treatment. The course is not designed for patients seeking treatment guidance - but it can help to understand how cancer develops and provides a framework for understanding cancer diagnosis and treatment. In Identification of the major types of cancer worldwide. Description of how genes contribute to the risk and growth of cancer. List and description of the ten cellular hallmarks of cancer. Definition of metastasis, and identification of the major steps in the metastatic	5	
	process. Description of the role of imaging in the screening,		
10	Techniques in bio physics Purpose: Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. The techniques including microscopy, spectroscopy, electrophysiology, single-molecule methods and molecular modeling	3	
11	Stem cell Purpose: Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and possible uses, ethical issues.	2	

Text / References:

1. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A

global approach", Pearson Education Ltd, 2014.

- E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- 3. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.
- 4. G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.
- 5. L. M. Prescott, J. P. Harley and C. A. Klein, "Microbiology", McGraw Hill Higher

Education, 2005.

6. Lewis J. Kleinsmith. "Principles of cancer biology", Pearson, 2016

COURSE OUTCOMES ((COs)
--------------------------	-------

CODE	DESCRIPTION
BS301.CO 1	Describe evolution and Darwin concept.
BS301.CO 2	Identify DNA as a genetic material in the molecular basis of information transfer. Apply thermodynamic principles to biological systems. Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine
BS301.CO 3	Describe immunology and antigen antibody reactions. To know about infectious diseases and vaccine preparation.

	To know about the basic techniques of biophysics and biochemistry. To know
BS301.CO 4	about environment and biosafety processes. How to do drug designing.
	Application of biological principles of biology for engineering designs.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	1	2	1	2	-	2	-	-	1	-	-	2
CO2	2	2	2	2	-	3	-	-	1	-	-	3
CO3	1	3	1	3	-	2	-	-	2	-	-	2
CO4	2	2	1	3	-	3	-	-	1	-	-	3
CO5	1	2	2	2	-	2	-	-	2	-	-	2
Average	1.60	2.2	1.4	2.4	-	2.25	-	-	1.4	-	-	1.4

Name	e of the course	INDIAN CONSTITU	JTION		
Cours	se Code: MC-EE 301	Semester: 3rd			
Durat	tion: 6 months	Maximum Marks: 10	00		
Teach	ning Scheme	Examination Scheme	2		
Theor	ry: 3 hrs/week	Mid Semester Exam:	15 Marks		
Tutor	ial: 0 hr/week	Assignment & Quiz:	10 Marks		
Practi	cal: 0 hrs/week	Attendance:	05 Marks		
Credit	t Points: 0	End Semester Exam: 70 Marks			
Objec	ctive:				
1.	To have basic knowledge about Indian C	onstitution.			
2.	To understand the structure and functioning of union, state and local self-government.				
3.	To understand the structure, jurisdiction and function of Indian judiciary.				
Pre-R	lequisite				
1.	NIL				
Unit	it Content Hrs Mark				
1	Indian Constitution:	5			
	Sources and constitutional history, Features: Citizenship,				
	Preamble, Fundamental Rights and Duties, Directive				
	Principles of State Policy				

	Union government and its administration: Structure of the Indian Union: Federalism, Centre- State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha. State government and its administration: Governor: Role and Position, CM and Council of ministers, State Secretariat: Organisation, Structure and Functions	10	
3 S t S F C S S S S S S S S S S F F F F	Supreme court: Organization of supreme court, procedure of the court, independence of the court, jurisdiction and power of supreme court. High court: Organization of high court, procedure of the court, independence of the court, jurisdiction and power of supreme court. Subordinate courts: constitutional provision, structure and urisdiction. National legal services authority, Lok adalats, family courts, gram nyayalays. Public interest litigation (PIL): meaning of PIL, features of PIL, scope of PIL, principle of PIL, guidelines for admitting PIL	10	
4 I	Local Administration:	10	
D M R In ro C le g	District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Pachayati raj: ntroduction, PRI: Zila Pachayat, Elected officials and their oles, CEO Zila Pachayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village evel: Role of Elected and Appointed officials, Importance of rass root democracy.		

1. Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.

Reference books

1. DD Basu, " Introduction to the constitution of India", 21st Edition, Lexis Nexis Books Publication ltd, India

Course Outcome:

COURSE OUTCOMES (COs)				
CODE	DESCRIPTION			
MC EE301.CO 1	Understanding the significance of Preamble and have an insight into the history of the framing of constitution.			
MC EE301.CO 2	Understanding the structure and functioning of union, state and local self- government.			

MC EE301.CO 3	Understanding the structure, jurisdiction and function of Indian judiciary.
MC EE301.CO 4	Knowing about the basics of PIL and guideline for admission of PIL. Functioning of local administration starting from block to Municipal Corporation.

CO-PO Mapping :

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	-	1	2	-	2	2	-	1	1	1	3
CO2	-	-	1	2	-	2	1	-	2	1	-	3
CO3	-	-	2	2	-	2	1	-	3	1	-	3
CO4	-	-	2	2	-	1	1	-	3	2	-	3
Average	-	-	1.5	2	-	1.75	1.25	-	2.25	1.25	1	3

4th Semester

Name of the course	ELECTRIC MACHINE-I	ELECTRIC MACHINE-I				
Course Code: PC-EE-401	Semester: 4th	Semester: 4th				
Duration: 6 months	Maximum Marks: 100	Maximum Marks: 100				
Teaching Scheme	Examination Scheme					
Theory: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutorial: 0 hr/week	Assignment & Quiz: 10	Marks				
Practical: hrs/week	Attendance: 0	5 Marks				
Credit Points: 3	End Semester Exam: 7	0 Marks				
Objective:						
1. To review the concept of magne	tic fields and magnetic circuits					
2. To learn the principle of produc	tion of electromagnetic force and torqu	ıe.				
3. To learn the basic principle of c	To learn the basic principle of operation of DC machine					
4. To learn the principle of operation	To learn the principle of operation and characteristics of DC motor and generator					
5. To learn the principle of operation	on, connections and different tests on '	Transformers				
6. To acquire problem solving skill	To acquire problem solving skills to solve problems of DC machines and Transformers					
Pre-Requisite						
1. Basic Electrical Engineering (ES-EE-101)						
2. Electric Circuit Theory (PC-EE-3)	Electric Circuit Theory (PC-EE-301)					
3. Electromagnetic Field Theory (P	Electromagnetic Field Theory (PC-EE-303)					
Unit	t Content Hrs Marks					

1	Magnetic fields and magnetic circuits: Review of magnetic circuits - MMF, flux, reluctance, inductance; review of Ampere Law and Biot Savart Law; Visualization of magnetic fields produced by a bar magnet and a current carrying coil - through air and through a combination of iron and air; influence of highly permeable materials on the magnetic flux lines.	3	
2	Electromagnetic force and torque: B-H curve of magnetic materials; flux-linkage vs current characteristic of magnetic circuits; linear and nonlinear magnetic circuits; energy stored in the magnetic circuit; force as a partial derivative of stored energy with respect to position of a moving element; torque as a partial derivative of stored energy with respect to angular position of a rotating element. Examples - galvanometer coil, relay contact, lifting magnet, rotating element with eccentricity or saliency	5	
3	DC machines: Basic construction of a DC machine, magnetic structure - stator yoke, stator poles, pole-faces or shoes, air gap and armature core, visualization of magnetic field produced by the field winding excitation with armature winding open, air gap flux density distribution, flux per pole, induced EMF in an	8	

	armature coil. Armature winding and commutation -		
	Elementary armature coil and commutator, lap and wave		
	windings, construction of commutator, linear commutation		
	Derivation of back EMF equation, armature MMF wave,		
	derivation of torque equation, armature reaction, air gap flux		
	density distribution with armature reaction.		
4	DC machine - motoring and generation:		
	Armature circuit equation for motoring and generation, Types		
	of field excitations - separately excited, shunt and series. Open		
	circuit characteristic of separately excited DC generator, back		
	EMF with armature reaction, voltage build-up in a shunt		
	generator, critical field resistance and critical speed. V-I	7	
	characteristics and torque-speed characteristics of separately		
	excited, shunt and series motors. Speed control through		
	armature voltage. Losses, load testing and back-to-back testing		
	of DC machines		
5	Transformers:		
	Principle, construction and operation of single-phase		
	transformers, equivalent circuit, phasor diagram, voltage		
	regulation, losses and efficiency Testing - open circuit and		
	short circuit tests, polarity test, back-to-back test, separation of		
	hysteresis and eddy current losses Three-phase transformer -		
	construction, types of connection and their comparative		
	features. Parallel operation of single-phase and three-phase		
	transformers. Autotransformers - construction, principle.	12	
	applications and comparison with two winding transformer.		
	Magnetizing current, effect of nonlinear B-H curve of		
	magnetic core material, harmonics in magnetization current.		
	Phase conversion - Scott connection, three-phase to six-phase		
	conversion. Tap-changing transformers - No-load and on-load		
	conversion, Tap-changing transformers - No-load and on-load tap-changing of transformers. Three-winding transformers		
	conversion, Tap-changing transformers - No-load and on-load tap-changing of transformers, Three-winding transformers. Cooling of transformers.		

- 1. Electrical Machines-I, P.S. Bimbhra, Khanna Publishing House (AICTE)
- 2. Electrical Machinery, P.S. Bimbhra, 7th Edition, Khanna Publishers
- 3. Electric machines, D.P. Kothari & I.J Nagrath, 3rd Edition, Tata Mc Graw-Hill Publishing Company Limited
- 4. Electrical Machines, P.K. Mukherjee & S. Chakrabarty, 2nd edition, Dhanpat Rai Publication.

Reference books:

- 1. Electric Machinery & Transformers, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electrical Machines, R.K. Srivastava, Cengage Learning
- 3. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition.
- 4. The performance and Design of Alternating Current Machines, M.G.Say, CBS Publishers & Distributors.
- 5. Electric Machinery & transformer, Irving L Koskow, 2nd Edition, Prentice Hall India

Course outcome codes	Statement
EE-401.1	Remember the effects of Electromechanical energy on Electrical and Magnetic circuits.
EE-401.2	Understand the working principle of DC Machines, transformers & induction machines.
EE-401.3	Solve numerical problems on DC Machines, transformers & induction machines.
EE-401.4	Analyse the different performance characteristics of on DC Machines, transformers & induction machines.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EE-	3	2	1	-	-	-	1	-	-	1	1	2
401.1												
EE-	3	3	2	1	1	1	1	-	-	1	2	1
401.2												
EE-	3	3	3	2	1	-	2	-	1	2	1	1
401.3												
EE-	3	3	2	1	3	-	2	-	1	2	-	-
401.4												
Average	3	3	3	1	2	1	1	-	1	1	1	1

Department of Electrical Engineering

Name	of the course	DIGITAL ELECTRONICS					
Cours	e Code: PC-EE-402	Semester: 4 th					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme					
Theor	ry: 3 hrs/week	Mid Semester Exam: 15 Marks					
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks				
Practi	cal: hrs/week	Attendance: 0	05 Marks				
Credi	t Points: 3	End Semester Exam: 7	0 Marks				
Objec	tive:						
1.	To learn the fundamentals of Digital systems	and principle of operation	n of Logic fam	ilies.			
2.	To learn the principle of operation of Combin	ational digital circuits.					
3.	To learn the principle of operation of sequenti	ial circuit and systems.					
4.	To learn the principle of operation of A/D ar	nd D/A converter					
5.	To learn the principle of operation of semicon	nductor memories and Pr	ogrammable log	gic devices.			
6.	To acquire problem solving skills to solve pro	blems of Digital circuits					
Pre-R	equisite						
1.	Analog Electronics (PC-PC-EE-303)		1	1			
Unit	Content		Hrs	Marks			
1	Fundamentals of Digital Systems and logic families:						
	Digital signals, digital circuits, AND, OR, NOT, NAND, NOR						
	and Exclusive-OR operations, Boolean algebra, examples of						
	IC gates, number systems-binary, si	gned binary, octal					
	hexadecimal number, binary arithmetic, one's and two's						
	complements arithmetic, codes, error dete	ecting and correcting	7				
	codes, characteristics of digital ICs, digita	l logic families, TTL,					
	Schottky TTL and CMOS logic, interfaci	ing CMOS and TTL.					
	Tri-state logic						
2	Combinational Digital Circuits:						
-	Standard representation for logic t	functions K-man					
	representation simplification of Logic fu	nctions using K-man					
	minimization of logical functions. Don't a	netions using K-map,					
	Multiplayer, Do Multiplayer/Decoders	Addarg Subtractor	7				
	BCD arithmetic agenty look sheed adder	Adders, Subtractors,					
	BCD anumetic, carry look anead adder,	serial adder, ALU,					
	elementary ALU design, popular MSI chij	ps, digital					
	comparator, parity checker/generator, cod	le converters, priority					
	encoders, decoders/drivers for display devices, Q-M method of						
	function realization.						
3	Sequential circuits and systems:						
	A 1-bit memory, the circuit properties of Bistable latch, the						
	clocked SR flip flop, J- K-T and D types f	lipflops, applications					
	of flipflops, shift registers, application	s of shift registers,					
	serial to parallel converter, parallel to se	rial converter, ring					
	counter, sequence generator, ripple(Asyno	chronous) counters,	7				
	synchronous counters, counters design us	ing flip flops, special					
	counter IC's, asynchronous sequential cou	inters, applications of					

	counters.		
4	A/D and D/A Converters:		
	Digital to analog converters: weighted resistor/converter, R-2R		
	Ladder, D/A converter, specifications for D/A converters,		
	examples of D/A converter, 1Cs, sample and hold circuit,		
	analog to digital converters: quantization and encoding,	_	
	parallel comparator A/D converter, successive approximation	7	
	A/D converter, counting A/D converter, dual slope A/D		
	converter, A/D converter using voltage to frequency and		
	voltage to time conversion, specifications of A/D converters,		
	example of A/D converter ICs.		
5	Semiconductor memories and Programmable logic devices:		
	Memory organization and operation, expanding memory size,		
	classification and characteristics of memories, sequential	_	
	memory, read only memory (ROM), read and write	7	
	memory(RAM), content addressable memory (CAM), charge		
	de coupled device memory (CCD), commonly used memory		
	chips, ROM as a PLD, Programmable logic		
	array, Programmable array logic, complex Programmable logic		
	devices (CPLDS), Field Programmable Gate Array (FPGA).		

- 1. Digital Principles & Application, 5th Edition, Leach & Malvino, Mc Graw Hill Company.
- 2. Modern Digital Electronics, 4th Edition, R.P. Jain. Tata Mc Graw Hill Company Limited
- 3. Fundamental of Digital Circuits, A. Anand Kumar, 4th Edition, PHI.
- 4. Digital Electronics, R. Anand, Khanna Publishing House (2018).

Reference books:

- 1. Digital Logic Design, Morries Mano, PHI.
- 2. Digital Integrated Electronics, H. Taub & D. Shilling, Mc Graw Hill Company.
- 3. Digital Electronics, James W. Bignell & Robert Donovan, Thomson Delman Learning.
- 4. Fundamental of logic Design, Charles H. Roth, Thomson Delman Learning.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Describe the function of different building blocks of digital electronics, semiconductor memories and programmable logic devices.
- 2. Explain the principle of operation of combinational and sequential digital circuits, A/D and D/A converter
- 3. Solve numerical problems of Boolean algebra, number system, combinational & sequential digital circuits and A/D and D/A converter.
- 4. Specify applications of combinational and sequential digital circuits.
- 5. Determine specifications of different digital circuits.

CO-PO MAPPING:

COs	PO1	PO2	PO3	PO4	РО	РО	РО	PO8	PO9	PO10	PO11	PO12
					5	6	7					
CO1	2	1	-	1	-	-	1	1	-	-	-	1
CO2	2	3	1	-	1	-	-	-	1	1	1	1
CO3	2	3	1	-	-	1	1	-	1	1	1	1
CO4	2	3	1	-	-	1	1	-	1	1	1	1
CO5	2	3	1	-	-	1	1	-	1	1	1	1
AVG	2	2.6	1	1	1	1	1	1	1	1	1	1

Name	e of the course	ELECTRICAL & ELECTRONICS MEASUREMENTS				
Cours	e Code: PC-EE-403	Semester: 4th				
Durat	ion: 6 months	Maximum Marks: 100				
Teach	ing Scheme	Examination Scheme				
Theor	ry: 3 hrs/week	Mid Semester Exam: 15	5 Marks			
Tutor	ial: 0hr/week	Assignment & Quiz: 10	Marks			
Practi	cal: hrs/week	Attendance: 05	5 Marks			
Credit	t Points: 3	End Semester Exam: 70) Marks			
Objec	Objective:					
1.	To learn methods of measurement, errors in r	neasurement and its classi	fication.			
2.	To learn the principle of operation of analog	and digital meters.				
3.	To learn the basic principle of operation of in	strument transformers.				
4.	To learn the principle of operation of cathode	ray oscilloscope and diffe	erent sensors a	and		
	transducers.					
5.	To learn the principle of measurement of pov	wer, energy and different	electrical para	umeters		
6.	6. To acquire problem solving skills to solve problems on the topics studied.					
Pre-R	Pre-Requisite					
1.	1. Basic Electrical Engineering (ES-EE-101)					
2.	Electric Circuit Theory (PC-EE-301)					
Unit	Content Hrs Marks					

	· · · · · · · · · · · · · · · · · · ·		
1	Measurements:		
	• • Method of measurement, Measurement system, Classification		
	of		
	instruments, Definition of accuracy, Precision, Resolution, Speed of		
	response, Error in measurement, Classification of errors, loading	7	
	effect due to shunt and series connected instruments.		
	Analog meters:		
	• • General features, Construction, Principle of operation and		
	torque		
	equation of Moving coil. Moving iron, Electrodynamometer,		
	Induction instruments · · · Principle of operation of the		
2	Instrument transformer.		
2	• • Disadvantage of shunt and multipliers. Advantage of		
	Instrument		
	institution		
	transformer arrange	0	
	Massing and of Devices	9	
	Measurement of Power:		
	• Principle of operation of Electrodynamic & Induction type		
	wattmeter, Wattmeter errors		
	Measurement of Energy:		
	• • Construction, theory and application of AC energy meter,		
3	Measurement of resistance:		
	• • Measurement of medium, low and high resistances, Megger		
	Potentiometer:		
	• • Principle of operation and application of Crompton's	8	
	DC		
	potentiometer, Polar and Co-ordinate type AC potentiometer,		
	AC Bridges:		
	• • Measurement of Inductance, Capacitance and frequency by AC		
	bridges		
4	Cathode ray oscilloscope (CRO):		
	• • Measurement of voltage, current, frequency & phase by		
	oscilloscope. Frequency limitation of CRO. Sampling and storage		
	oscilloscope. Double beam CRO.		
	Electronic Instruments:	7	
	• • Advantages of digital meter over analog meters Digital		
	voltmeter		
	Resolution and sensitivity of digital meters. Digital multimeter		
	Digital frequency meter Signal generator Digital Storage		
	oscilloscone		
	osenioscope.		
	Sansors & Transducare:		
5	· Introduction to concers & Transducers Studio course I VDT	4	
5	Tomporature transducers, Flow measurement using magnetic flow	•	
	remperature transducers, riow measurement using magnetic flow		
	measurement.		

1. A course in Electrical & Electronic Measurements & Instrumentation, A.K. Sawhney,

Dhanpat Rai & sons.

2. Electrical Measurement & Measuring Instruments, E.W. Golding & F.C. Wides, Wheeler

Publishing

3. Sensors & Transducers, D. Patranabis, PHI, 2nd edition.

Reference books:

- 1. Electronic Instruments, H.S. Kalsi, Tata Mc-Graw hill, 2nd Edition.
- 2. Digital Instrumentation, A.J. Bouwens, Tata Mc-Graw hill.
- 3. Modern Electronic instrumentation & Measuring instruments, A.D. Heltric & W.C. Copper,

Wheeler Publication

- 4. Instrument transducers, H.K.P. Neubert, Oxford University press.
- 5. All-in One Electronics Simplified, A.K. Maini, Khanna Book Publishing Co. (2018)

Course Outcome:

Course Name: EE-402

Course outcome codes	Statement
EE-402.1	Describe different measurement systems & types of analog meters
EE-402.2	Demonstrate different methods of power & resistance measurement
EE-402.3	Calculate the values of unknown electrical parameters using AC bridges & potentiometer
EE-402.4	Analyse different measurement techniques using digital meters.

COs	РО	РО	PO	РО	РО	РО	РО	РО	РО	P01	P01	P01	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
EE- 402.1	3	3	2	1	1	1	1	-	-	1	-	2	3	2
EE- 402.2	3	3	2	2	1	2	2	-	-	1	1	2	2	3
EE- 402.3	3	3	3	2	2	2	2	-	2	2	2	3	3	3
EE-	3	3	3	3	3	3	3	-	3	-	3	3	3	3

Department of Electrical Engineering

402.4														
Averag	3	3	2	2	2	2	2	-	1	1	1	2	3	3
е														

After completion of this course, the learners will be able to

1. explain the terms accuracy, precision, resolution, speed of response, errors in measurement,

loading effect

2. describe methods of measurement of power, energy by instruments and resistance,

capacitance and inductance by bridges and potentiometer

- 3. explain the principle of operation of analog meters, instrument transformer, digital multimeter, digital voltmeter, digital frequency meter, signal generator, strain gauge, LVDT and temperature transducers
- 4. explain the different building block, principle of operation of oscilloscope and measurement techniques of voltage, current, frequency and phase by oscilloscope
- 5. solve numerical problems related to analog meters, instrument transformer, measurement of power, energy, resistance, inductance and capacitance
- 6. specify applications of analog and digital measuring instruments, sensors and transducers

Name	e of the course	THERMAL POWER EN	GINEERING				
Course	e Code:ES-EE-401	Semester: 4th					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme					
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks				
Practi	cal: hrs/week	Attendance: 0	5 Marks				
Credit	t Points: 3	End Semester Exam: 70 Marks					
Objec	Objective:						
1.	. To learn the principle of operation of different types of boilers and Turbines						
2.	To learn the principle of operation of IC engines and Gas turbines						
6.	To acquire problem solving skills to solve pro turbines	oblems of boilers, turbine	es, IC engines ar	nd Gas			
Pre-R	equisite						
1.	Mathematics (BS M102 & BS M201)						
Unit	Content		Hrs	Marks			
1	Boilers:						
	Water Tube & Fire Tube boilers, Circulatir	ng Principles, Forced					
	Circulation, Critical pressure, Superheaters, Reheaters,						
	attemperators, induced draught, forced draught and secondary air 12						
	Fans, Boiler performance analysis and heat balance. Combustion						
	Systems, Environmental Protection - ESP, Cyclone Separator, Dust						
	Collector etc.	• • •					

2	Turbines:		
	Rotary Thermodynamic devices - Steam turbines & their		
	classifications - Impulse & Reaction typeTurbines,		
	Thermodynamics of compressible fluid-flow, equation and		
	continuity - Isentropic flow throughnozzles, velocity diagram, Blade	12	
	efficiency, optimum velocity ratio, multi-staging, velocity &		
	pressure compounding, losses in turbines, erosion of turbine blades,		
	sustem		
	system.		
3	IC Engines:	-	
	IC Engines - classification, Analysis of a standard cycle, fuel	6	
	characteristic of SI & CI Engine, Combustion, Engine performance		
	Automotive Engine exhaust emission and their control		
4	Gas Turbines:		
	Gas turbine Analysis - Regeneration - Reheating, Isentropic	5	
	efficiency Combustion efficiency		
1			1

Text books:

- 1. Engineering Thermodynamics, P.K. Nag, 6th Edition, Mc Graw Hill Education Pvt. Ltd
- 2. Power Plant Engineering, P K Nag, 4th Edition, Mc Graw Hill Education Pvt. Ltd
- 3. Thermal Engineering , P.S. Ballaney, 25th Edition, , Khanna publishers
- 4. Power Plant Engineering, Domkundwar, Arora, Dhanpat Rai & Co.

Reference books:

- 1. Thermodynamics, Cengel, 6th Edition, Tata Mc Graw-Hill Education.
- 2. Power Plant Technology ,M M Ei-Wakil 1st Edition, Tata McGraw Hill
- 3. Heat and Thermodynamics, M W Zemansky & R.H.Dittman, 8th Edition, McGraw Hill

Course Outcome:

Course Name: EE-402

Course outcome codes	Statement
EE-402.1	Describe the function of different components of boilers. Engines and turbines
EE-402.2	Explain the principle of operation & controlling the parameters of different types of boilers, turbines, IC engines and Gas turbines
EE-402.3	Solve numerical problems of boilers, turbines, IC engines and Gas turbines.
EE-402.4	Determine the performance & efficiency of boilers, engines and turbines

Department of Electrical Engineering

COs	РО	PO	РО	P01	P01	P01	PSO	PSO						
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
EE- 402.1	3	3	2	1	1	1	1	-	-	1	-	2	3	2
EE- 402.2	3	3	2	2	1	2	2	-	-	1	1	2	2	3
EE- 402.3	3	3	3	2	2	2	2	-	2	2	2	3	3	3
EE- 402.4	3	3	3	3	3	3	3	-	3	-	3	3	3	3
Averag e	3	3	2	2	2	2	2	-	1	1	1	2	3	3

Department of Electrical Engineering

Name	of the course	VALUES AND ETHICS IN PROFESSION				
Course	e Code: HM-EE-401	Semester: 4th				
Durat	ion: 6 months	Maximum Marks: 100				
Teach	ing Scheme	Examination Scheme				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks			
Practi	cal: 0 hrs/week	Attendance: 0	05 Marks			
Credit	a Points: 3	End Semester Exam: 7	0 Marks			
Objec	tive:					
1.	To inculcate Human values to grow as a respo	onsible human beings wi	th a proper perso	onality.		
2.	To instill Professional Ethics to maintain ethic	cal conduct and discharg	e professional d	uties.		
Pre-R	equisite					
1.	Not applicable		I			
Unit	Content		Hrs	Marks		
	Human values:					
	Morals, Values, and Ethics - Integrity -Tru	stworthiness - Work				
1	Ethics - Service-Learning - Civic Virtue -	Respect for others -				
	Living Peacefully - Caring - Sharing - Hone	sty -Courage - Value	5			
	Time - Co-operation - Commitment - Empath	ny - Self-confidence -				
	Spirituality- Character.					
	Principles for harmony:					
2	Truthfulness - Customs and Traditions - Value	e Education - Human	~			
2	Dignity - Human Rights - Fundamental Dut	ies - Aspirations and	5			
	Harmony (I, We & Nature) - Gender Blas - E	Committee Intelligence				
	- Salovey - Mayer Model - Emotional	Competencies -				
	Engineering othics and social experimentati	0 n :				
	History of Ethics - Need of Engineering	Ethics - Senses of				
	Engineering Ethics - Profession and Professic	nalism Self Interest				
	Moral Autonomy - Utilitarianism - Virtue T	heary - Uses of Ethical	8			
3	Theories - Deontology- Types of Inquiry -	Kohlberg's Theory -	0			
5	Gilligan's Argument - Heinz's Dilemma	- Comparison with				
	Standard Experiments Learning from the	- Past - Engineers as				
	Managers - Consultants and Leaders - Balance	red Outlook on Law -				
	Role of Codes - Codes and Experimental Nat	ure of Engineering				
		and of Englisheding.				
	Engineers' responsibility towards sa	fety and risk for				
	sustainable development:					
4	The concept of Safety - Safety and Risk	- Types of Risks -	5			
	Voluntary v/s Involuntary Risk - Consequence	ces - Risk Assessment				
	-Accountability - Liability - Reversible Effec	ts - Threshold Levels				
	of Risk - Delayed v/s Immediate Risk - Safe	ty and the Engineer -				
	Designing for Safety - Risk-Benefit Analysis-	-Accidents.				
	T					
5	Engineers' duties and rights:					
	Concept of Duty - Professional Duties - Coll	egiality - Techniques				
	for Achieving Collegiality - Senses of Loya	any - Consensus and				
1	Connoversy - Professional and Individual Ri	gins - Conndennal and	1			

	Proprietary Information - Conflict of Interest-Ethical egoism - Collective Bargaining - Confidentiality - Gifts and Bribes - Problem solving-Occupational Crimes- Industrial Espionage- Price Fixing-Whistle Blowing.	7	
6	Global issues: Globalization and MNCs -Cross Culture Issues - Business Ethics - Media Ethics - Environmental Ethics - Endangering Lives - Bio Ethics - Computer Ethics - War Ethics - Research Ethics - Intellectual Property Rights.	5	

1. Professional Ethics & Human Values, Premvir Kapoor, Khanna Publishing House, Delhi

(AICTE Recommended Textbook).

2. A text book on professional Ethics & Human values, R.S. Naagarazan, New Age international

Publishing.

- 3. Engineering Ethics, M. Govindarajan, S. Natarajan, V.S. Senthilkumar, Prentice Hall India.
- 4. Human value and professional Ethics, Jayshree Suresh, B.S. Raghvan, S. Chand Publishing

Reference books:

1. Ethics in Science and Engineering, James G. Speight & Russel

Foote, Wiley.

Course Outcome:

COURSE OUTCOMES (COs)						
CODE	DESCRIPTION					
HMEE 401.CO 1	Discuss different aspects of human values, ethics, engineers' responsibility and duties					
HMEE 401.CO 2	Explain different principles, different theories and laws of engineering ethics and social experimentation					
HMEE 401.CO 3	Identify different factors in the light of Engineers' responsibility towards safety and risk					
HMEE 401.CO 4	Instill Professional Ethics to maintain ethical conduct and discharge professional duties and exetensional rights and Global perspectives.					

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	1	-	2	-	-	2	3	3	1	1	1	2
CO2	1	-	1	-	-	3	3	3	1	2	1	2
CO3	1	-	2	1	1	2	3	3	1	1	-	2
CO4	1	-	2	-	-	2	2	3	2	2	1	2
Average	1	-	1.75	1	1	2.25	2.75	3	1.25	1.5	1	2

	of the course	ENVIRONMEMTAL SCI	ENCE			
Course Code: MC-EE-401		Semester: 4th				
Durat	ion: 6 months	Maximum Marks: 100				
Teach	ing Scheme	Examination Scheme				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks			
Practi	cal: 0 hrs/week	Attendance: 0	05 Marks			
Credit	t Points: 0	End Semester Exam: 7	0 Marks			
Objec	tive:					
1.	To understand the environment and its relation	onships with human acti	vities			
2.	To be able to apply the fundamental knowle	dge of science and engin	neering to assess	S		
	environmental and health risk					
3.	To understand environmental laws and regulations to develop guidelines and procedures for					
	health and safety issues					
4.	To acquire the skill to solve problem related to environment and pollution					
Pre-Requisite						
1.	Basic knowledge of science					
Unit	Content Hrs Marks					
	Content		FIIS	Marks		
	Basic ideas of environment, basic concep	ots, man, society &		Warks		
	Basic ideas of environment, basic concept environment, their interrelationship (1L)	ots, man, society &	nis	WIAIKS		
	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a	ots, man, society &	nis	Marks		
	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ	ots, man, society & associated problems, mental engineering,	nis	Marks		
	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource	ots, man, society & associated problems, amental engineering, ce, renewable, non-	nis	Marks		
	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource renewable, potentially renewable, effect of e	ots, man, society & associated problems, amental engineering, ce, renewable, non- xcessive use vis-à-vis	6	Marks		
1	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource renewable, potentially renewable, effect of e population growth. Sustainable Development	ots, man, society & associated problems, mental engineering, ce, renewable, non- xcessive use vis-à-vis (2L).	6	Marks		
1	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource renewable, potentially renewable, effect of e population growth, Sustainable Development Materials balance: Steady state conservation	ots, man, society & associated problems, mental engineering, ce, renewable, non- xcessive use vis-à-vis (2L).	6	Marks		
1	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource renewable, potentially renewable, effect of e population growth, Sustainable Development Materials balance: Steady state conservation system with non-conservative pollutants	ots, man, society & associated problems, mental engineering, ce, renewable, non- xcessive use vis-à-vis (2L). n system, steady state step_function (1L)	6	Marks		
1	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource renewable, potentially renewable, effect of e population growth, Sustainable Development Materials balance: Steady state conservation system with non-conservative pollutants. Environmental degradation: Natural environ	ots, man, society & associated problems, mental engineering, ce, renewable, non- xcessive use vis-à-vis (2L). n system, steady state , step function (1L).	6	Marks		
1	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource renewable, potentially renewable, effect of e population growth, Sustainable Development Materials balance: Steady state conservation system with non-conservative pollutants, Environmental degradation: Natural environ Flood earthquake Landslide-cause	ots, man, society & associated problems, mental engineering, ce, renewable, non- xcessive use vis-à-vis (2L). n system, steady state , step function (1L). mental Hazards like	6	Marks		
1	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource renewable, potentially renewable, effect of e population growth, Sustainable Development Materials balance: Steady state conservation system with non-conservative pollutants, Environmental degradation: Natural environ Flood, earthquake, Landslide-cause control/management: Anthropogenic dograd	ots, man, society & associated problems, mental engineering, ce, renewable, non- xcessive use vis-à-vis (2L). n system, steady state , step function (1L). mental Hazards like es, effects and lation like Acid rain	6	Marks		
1	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource renewable, potentially renewable, effect of e population growth, Sustainable Development Materials balance: Steady state conservation system with non-conservative pollutants, Environmental degradation: Natural environ Flood, earthquake, Landslide-cause control/management; Anthropogenic degrad	ots, man, society & associated problems, mental engineering, ce, renewable, non- xcessive use vis-à-vis (2L). n system, steady state , step function (1L). mental Hazards like es, effects and lation like Acid rain-	6	Marks		
1	Basic ideas of environment, basic concept environment, their interrelationship (1L) Mathematics of population growth and a Importance of population study in environ definition of resource, types of resource renewable, potentially renewable, effect of e population growth, Sustainable Development Materials balance: Steady state conservation system with non-conservative pollutants, Environmental degradation: Natural environ Flood, earthquake, Landslide-cause control/management; Anthropogenic degrad	ots, man, society & associated problems, mental engineering, ce, renewable, non- xcessive use vis-à-vis (2L). n system, steady state step function (1L). mental Hazards like es, effects and lation like Acid rain-	6	Marks		

			1
	Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function (1L).		
	Structure and function of the following ecosystem: Forest		
	ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic	6	
	ecosystems. Mangrove ecosystem (special reference to Sundar		
2	ban): Food chain [definition and one example of each food chain].		
	Food web (2L)		
	Biogeochemical Cycle- definition, significance, flow chart of		
	different cycles with only elementary reaction [Oxygen, carbon,		
	Nitrogen, Phosphate, Sulphur] (1L)		
	Biodiversity- types, importance, Endemic species, Biodiversity Hot-		
	spot, Threats to biodiversity, Conservation of biodiversity.(2L)		
	Atmospheric Composition: Troposphere, Stratosphere,		
	Mesosphere, Thermosphere, Tropopause and Mesopause (1L)		
	Energy balance: Conductive and Convective heat transfer, radiation		
	heat transfer, simple global temperature model [Earth as a black		
	body, earth as albedo], Problems.(1L)		
	Green house effects: Definition, impact of greenhouse gases on the		
	global climate and consequently on sea water level, agriculture and		
	marine food. Global warming and its consequence. Control of		
	Global warming, Earth's heat budget.(1L)		
	Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric		
	stability temperature inversion (radiation inversion) (2L)		
3	Atmospheric dispersion: Maximum mixing depth ventilation		
	coefficient effective stack height smokestack nlumes and Gaussian		
	element, effective stack height, shokestack pluttes and Gaussian		
	Definition of pollutants and contaminants. Primary and secondary	11	
	pellutents, emission standard, emission collutent. Sources and effect		
	fondutants, emission standard, emena ponutant. Sources and effect		
	of different air pollutants Suspended particulate matter, oxides of		
	carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L)		
	Smog, Photochemical smog and London smog. Depletion Ozone		
	layer: CFC, destruction of ozone layer by CFC, impact of other		
	green-house gases, effect of ozone modification. (1L)		
	Standards and control measures: Industrial, commercial and		
	residential air quality standard, control measure (ESP. cyclone		
	separator, bag house, catalytic converter, scrubber (ventury),		
	Statement with brief reference). (1L)		

4	Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. (2L) River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation, reaeration], COD, Oil, Greases, pH. (2L) Lake: Eutrophication [Definition, source and effect]. (1L) Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)(1L) Standard and control: Waste water standard [BOD, COD, Oil, Grease], Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary	9	
	sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary		
	treatment definition. (2L) Water pollution due to the toxic elements and their biochemical		
	effects: Lead, Mercury, Cadmium, and Arsenic (1L)		
5	Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol. (3L)	3	

- 1. Environmental Studies, M.P. Poonia & S.C. Sharma, Khanna Publishing House
- 2. Introduction to Environmental Engineering and Science, G.M. Masters, Prentice-Hall of India Pvt. Ltd.,1991.

Reference books:

- 1. Environmental Chemistry, A. De, New Age International
- 2. Text Book for Environmental Studies, Erach Bharucha, UGC
- 3. Elements of Environmental Pollution Control, O.P. Gupta, Khanna Publishing House (AICTE Recommended Book).

COUDSE OUTCOMES (COa)

Course Outcome:

	COURSE OUTCOMES (COS)
CODE	DESCRIPTION
MC-EE-401.CO 1	To understand the natural environment and its relationships with human activities
MC-EE-401.CO 2	To apply the fundamental knowledge of science and engineering to assess environmental and health risk
MC-EE-401.CO 3	To develop guidelines and procedures for health and safety issues obeying the environmental laws and regulations
MC-EE-401.CO 4	Acquire skills for scientific problem-solving related to air, water, noise& land pollution
	10/

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	2	3	2	3	2	3	3	1	1	2	2
CO2	3	3	2	2	3	3	3	2	1	-	2	3
CO3	2	2	3	3	2	2	3	3	2	3	3	3
CO4	3	2	3	3	1	3	3	3	1	-	2	2
Average	2.5	2.25	2.75	2.5	2.25	2.5	3	2.75	1.25	2.0	2.25	2.25

Name	of the course	ELECTRIC MACHINE-I LABORATORY				
Course Code:PC-EE491		Semester: 4 th				
Durati	ion: 6 months	Maximum marks:100				
Teach	ing Scheme	Examination scheme:				
Theor	y: 0 hr/week	Continuous Internal Assessment:40				
Tutori	al: 0 hr/week	External Assessment: 60				
Practi	cal: 2 hrs/week					
Credit	t Points:1					
	Laboratory Exp	periments:				
1.	Determination of the characteristics of a separately excited DC generator.					
2.	Determination of the characteristics of a DC	motor				
3.	Study of methods of speed control of DC moto	or				
4.	Determination of the characteristics of a com	pound DC generator (short shunt)				
5.	Determination of speed of DC series motor as	a function of load torque.				
6.	Polarity test on a single phase transformer					
7.	Determination of equivalent circuit of a single	e phase transformer and efficiency.				
8.	Study of different connections of three phase	transformer.				
9.	Study of Parallel operation of a single phase t	ransformers.				
10.	105 0. Determination of temperature rise and efficiency of the transformer.(Back to back test)					

Department of Electrical Engineering

Course Outcome:

PCEE491.1	Identify the components for perfroming experiment on Transformers and D.C.
	Machines.
PCEE491.2	Understand the corresponding circuit for perfroming experiment on
	Transformers and D.C. Machines.
PCEE491.3	Experiment on the constructed circuit based on Transformers and D.C.
	Machines.
PCEE491.4	Analyze the characteristics of Transformers, D.C. Machines.

CO-PO MAPPING:

SUBJEC	COs	PROGRAM OUTCOMES(POs)											
T CODE		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
		1	2	3	4	5	6	7	8	9	0	1	2
PCEE49	PCEE491.1	2	-	-	3	-	-	-	-	3	2	-	1
1	PCEE491.2	2	-	-	3	-	-	-	-	3	2	-	1
	PCEE491.3	2	-	-	3	-	-	-	-	3	2	-	1
	PCEE491.4	2	-	-	3	-	-	-	-	3	2	-	1
	AVERAG	2	0	0	3	0	0	0	0	3	2	0	1
	Ε												

Name	of the course	DIGITAL ELECTRONICS LABORATORY							
Course	e Code:PC-EE492	Semester: 4 th							
Durati	ion: 6 months	Maximum marks:100							
Teach	ing Scheme	Examination scheme:							
Theor	y: 0 hr/week	Continuous Internal Assessment:40							
Tutori	ial: 0 hr/week	External Assessment: 60							
Practi	cal: 2 hrs/week								
Credit	t Points:1								
	Laboratory Experiments:								
1.	Realization of basic gates using Universal logic gates.								
2.	Code conversion circuits- BCD to Excess-3 & vice-versa.								
3.	.4-bit parity generator & comparator circuits.								
4.	Construction of simple Decoder & Multiplexer circuits using logic gates.								
5.	Design of combinational circuit for BCD to decimal conversion to drive 7-segment display usingmultiplexer.								
6.	Construction of simple arithmetic circuits-Adder, Subtractor.								
7.	Realization of RS-JK & D flip-flops using Universal logic gates.								
8.	Realization of Universal Register using JK flip-flops & logic gates.								
9.	Realization of Universal Register using multiplexer & flip-flops.								
10.	Construction of Adder circuit using Shift Register & full Adder.								
11.	Realization of Asynchronous Up/Down counter								
12.	Realization of Synchronous Up/Down counter								
13.	Design of Sequential Counter with irregular sequences.								
14.	Realization of Ring counter & Johnson's counter.								
15.	Familiarization with A/D and D/A circuits								

Course Outcome:

After completion of this course, the learners will be able to

- 1. Identify appropriate equipment and instruments for the experiment
- 2. Test the instruments for application to the experiment
- 3. Construct decoder, multiplexer, adder and subtractor circuits with appropriate instruments and precaution
- 4. Realize RS-JK and D flip flop, universal register with gates, multiplexer and flip-flops and asynchronous and synchronous up down counters
- 5. Validate the operation of code conversion circuit –BCD to Excess 3 & vice versa, 4 bit parity generator & comparator circuits,

CO-PO MAPPING:

COs	PO1	PO2	PO3	PO4	РО	РО	РО	PO8	PO9	PO10	PO11	PO12
					5	6	7					
CO1	2	3	-	1	-	-	1	2	2	-	-	1
CO2	2	3	1	-	1	-	-	2	2	1	1	1
CO3	2	3	1	-	-	1	1	2	2	1	1	1
CO4	2	3	1	-	-	1	1	2	2	1	1	1
CO5	2	3	1	-	-	1	1	2	2	1	1	1
AVG	2	3	1	1	1	1	1	2	2	1	1	1

Name	of the course	ELECTRICAL & ELECTRONICS MEASUREMENT					
		LABORATORY					
Carro	Code DC EE402	Someotory Ath					
Cours	e Code:PC-EE495	Semester: 4"					
Durat	ion: 6 months	Maximum marks:100					
Teach	ing Scheme	Examination scheme:					
Theor	y: 0 hr/week	Continuous Internal Assessment:40					
Tutori	ial: 0 hr/week	External Assessment: 60					
Practi	cal: 2 hrs/week						
Credit	t Points:1						
	Laboratory Exp	periments:					
1.	Instrument workshop- Observe the construction of PMMC, Dynamometer, Electrothermal and						
	Rectifier type of instruments, Oscilloscope and	d Digital multimeter.					
2.	Calibrate moving iron and electrodynamomet	er type ammeter/voltmeter by potentiometer.					
3.	Calibrate dynamometer type wattmeter by pot	tentiometer.					
4.	Calibrate AC energy meter.						
5.	Measurement of resistance using Kelvin doub	le bridge.					
6.	Measurement of power using Instrument tran	sformer.					
7.	Measurement of power in Polyphase circuits.						
8.	Measurement of frequency by Wien Bridge.						
9.	9. Measurement of Inductance by Anderson bridge						
10.	Measurement of capacitance by De Sauty Bric	lge.					
11.	11. Measurement of capacitance by Schering Bridge.						

Course Outcome:

PC-EE- 493.1	To identify different measurement instruments.
PC-EE- 493.2	To illustrate the calibration of Potentiometer and AC Energy meter
PC-EE- 493.3	To explain the resistance and power measurement using Kelvin Double Bridge and Poly phase circuits
PC-EE- 493.4	To assess frequency, capacitance, inductance measurement different using AC Bridges

SUBJECT CODE	COs		PROGRAM OUTCOMES(POs)										
0022		PO 1	P O 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
	PC-EE-493 .1	3	3	3	1	2	3	1	-	-	-	-	1
PC-EE-493	PC-EE-493 .2	3	3	2	1	2	2	1	-	-	-	_	1
	PC-EE-493.3	3	3	3	1	2	3	1	-	-	-	-	1
	PC-EE-493.4	3	3	3	1	2	3	1	-	-	-	-	1
	AVERAG E	3	3	3	1	2	3	1	-	-	-	-	1

Name	of the course	THERMAL POWER ENGINEEING LABORATORY					
Course	e Code: ES-ME-491	Semester: 4 th					
Durat	ion: 6 months	Maximum marks:100					
Teach	ing Scheme	Examination scheme:					
Theor	y: 0 hr/week	Continuous Internal Assessment:40					
Tutori	ial: 0 hr/week	External Assessment: 60					
Practi	cal: 2 hrs/week						
Credit	t Points:1						
	Laboratory Ex	periments:					
1.	Study of Cut Models - Boilers IC Engines: La	nchashire Boiler, Bahcock & Willcox Boiler, Cochran					
	Boiler, Vertical Tubular Boiler, Locomotive E Engine	Boiler, 4S Diesel Engine, 4S Petrol Engine, 2S Petrol					
2.	Load Test on 4 Stroke Petrol Engine & Diesel F	Engine by Electrical Load Box.					
3.	Load Test on 4 Stroke Diesel Engine by Rope	Brake Dynamometer.					
4.	Heat Balance on 4 Stroke Diesel Engine by Ro	pe Brake Dynamometer & by Electrical Load Box.					
5.	Valve Timing Diagram on 4S Diesel Engine M	odel & 4S Petrol Engine Model					
6.	To find the Calorific Value of Diesel Fuel & Co	bal by Bomb Calorimeter					
7.	To find the Flash Point & Fire Point of Petrol &	z Diesel Fuel					
8.	To find the Cloud Point & Pour Point of Petrol	& Diesel Fuel					
9.	To find Carbon Particle Percentage in Diesel I	Engine Exhaust Smoke by Smokemeter and trace the					
	BHP Vs. % Carbon Curve						
10.	0. Measurement of the Quality of Steam - Enthalpy & Dryness fraction						

Course Outcome:

ES-ME- 491.1	Identify appropriate instruments for the experimental setup with safety precautions.
ES-ME-	Describe different parts of Lanchashire Boiler, Bahcock & Willcox Boiler, Cochran Boiler,
491.2	Vertical Tubular Boiler, Locomotive Boiler, 4S Diesel Engine, 4S Petrol Engine, 2S Petrol
	engine.
ES-ME-	Determine the performance & efficiency of 4 stroke petrol engine by electrical load box
491.3	and diesel engine by electrical load box and rope brake dynamometer.
ES-ME-	Calculate calorific value, flash point, fire point, cloud point, pour point of fuel.
491.4	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	3	1	1	-	2	-	1	2
CO2	3	1	1	2	3	2	3	-	2	1	2	2
CO3	3	2	3	2	2	2	3	1	3	1	2	1
CO4	2	2	3	3	2	2	3	1	3	1	2	1
Average	2.75	1.5	2	2	2.5	1.75	2.5	1	2.5	1	2.33	1.5

Department of Electrical Engineering

Semester-V

Name of the course ELECTRIC MACHINE-II							
Cour	Course Code: PC-EE-501 Semester: 5th						
Dura	tion: 6 months	Maximum Marks: 100					
Teach	ning Scheme	heme Examination Scheme					
Theory: 3 hrs/week Mid Semester Exam: 15 Marks							
Tutorial: 0hr/week Assignment & Quiz: 10 Marks							
Practical: hrs/week Attendance: 05 Marks							
Credi	t Points: 3	End Semester Exam: 7	0 Marks				
Obje	ctive:						
1.	To understand the arrangement of windings of	AC machines.					
2.	To understand the principle of production of pu	ulsating and revolving n	nagnetic fields.				
3.	To understand the principle of operation and c	characteristics of three p	phase Induction	machines			
4.	To understand the principle of operation and c	haracteristics of single	phase Induction	n machines			
5.	To understand the principle of operation and c	haracteristics of synchro	onous machine				
6.	To understand the principle of operation and ch	naracteristics of special	electromechani	cal devices.			
7.	To solve problems of Induction machines, sync	chronous machines and	special eletrom	echanical			
	devices.						
Pre-F	Requisite						
1.	Basic Electrical Engineering (ES-EE-101)						
2.	Electric Circuit Theory (PC-EE-301)						
3.	Electromagnetic field theory (PC-EE-303)						
4.	Electric Machine-I (PC-EE-401)						
Unit	Content		Hrs	Marks			
1	Fundamentals of AC machine windings:						
	Physical arrangement of windings in stator an	nd cylindrical rotor;					
	slots for windings; single-turn coil - active por	rtion and overhang;					
	full-pitch coils, concentrated winding, distribution	ited winding, winding					
	axis,3D visualization of the above winding ty	ypes, Air-gap MMF	5				
	distribution with fixed current through						
	winding-concentrated and distributed, Sint	usoidally distributed					
	winding, winding distribution factor	•					
2	Pulsating and revolving magnetic fields:						
	Constant magnetic field, pulsating magnetic	field - alternating					
	current in windings with spatial displaceme	ent, Magnetic field					
	produced by a single winding - fixed current a	and alternating current					
	Pulsating fields produced by spatially displace	d windings. Windings	5				
	spatially shifted by 90 degrees. Addition of	pulsating magnetic					
	fields. Three windings spatially shifted by 12	0 degrees (carrying					
	three-phase balanced currents) revolving magn	netic field					
3	Induction Machines:	iette field.					
	Construction Types (squirrel cage and slip-	-ring) Torque Slin					
	Characteristics Starting and Maximum Torqu	10					
	Phasor Diagram Losses and Efficiency F	ffect of parameter					
	variation on torque speed characteristics (va	riation of rotor and					
	stator registances stator voltage frequer sel	Mathods of starting					
	braking and anad control for induction materia	Concretor creation					
	braking and speed control for induction motors	s. Generator operation.					
	Sen-excitation. Doubly-Fed Induction Machine	es.					
1	Single-phase induction motors:						

4	Constructional features, double revolving field theory, equivalent circuit, determination of parameters. Split-phase starting methods and applications	5	
5	Synchronous machines:		
	Constructional features, cylindrical rotor synchronous machine -		
	generated EMF, equivalent circuit and phasor diagram, armature	10	
	characteristics of synchronous machines, V-curves. Salient pole		
	machine - two reaction theory, analysis of phasor diagram, power		
	angle characteristics. Parallel operation of alternators -		
	synchronization and load division.		
6	Special Electromechanical devices:		
	Principle and construction of switched Reluctance motor, Permanent	_	
	magnet machines, Brushless DC machines, Hysteresis motor,	5	
	Stepper motor, Tacho generators.		

- 1. Electrical Machines -II, P.S. Bimbhra, Khanna Book Publishing House.
- 2. Electrical Machinery, P.S. Bimbhra, Khanna Publishing House.
- 3. Electrical Machines, Nagrath & Kothary, TMH
- 4. Electrical Machines, P.K. Mukherjee and S. Chakravorti, Dhanpat Rai Publications.
- 5. Electrical Machines, Theory & Applications, M.N. Bandyopadhyay, PHI

Reference books:

- 1. Electric Machinery & Transformer, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electric Machinery & Transformes, Irving L. Kosow, PHI
- 3. Electric Machinery, A.E.Fitzgerald, Charles Kingsley, Jr. & Stephen D. Umans, 6th Edition, Tata McGraw Hill Edition.
- 4. Electrical Machines, R.K. Srivastava, Cengage Learning
- 5. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition
- 6. The performance and Design of Alternating Current Machines, M.G.Say, CBS publishers & distributors
- 7. Electric Machines, Charles A. Gross, CRC press.
- 8. Problems in Electrical Engineering, Parker smith, 9th Edition, CBS publishers & distributors.

Course Outcome:

Course outcome codes	Statement									
EE-501.1	To describe the concept of rotating magnetic fields.									
EE-501.2	To demonstrate the operation of AC & Fractional HP Machines.									
EE-501.3	To analyse performance characteristics of AC & Fractional HP Machines.									
EE-501.4	To solve numerical problems on AC & Fractional HP Machines.									

CO-PO Mapping:

JIS GROUP

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex

Electrical Machines-II

COs	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
EE- 501.1	3	3	3	2	1	1	1	1	1	1	1	3	3	2
EE- 501.2	3	3	3	2	1	1	1	1	1	1	1	3	3	2
EE- 501.3	3	3	3	2	1	1	1	1	1	1	1	3	3	2
EE- 501.4	2	2	2	3	3	3	3	1	2	2	1	2	1	3
Averag e	3	3	3	2	1	1	1	1	1	1	1	3	2	2

Name	e of the course	POWER SYSTEM-I					
Cours	se Code: PC-EE-502	Semester: 5th					
Dura	tion: 6 months	Maximum Marks: 100)				
Teach	Teaching Scheme Examination Scheme						
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks				
Practi	cal: hrs/week	Attendance: (05 Marks				
Credit	t Points: 3	End Semester Exam: 7	0 Marks				
Objec	ctive:						
1.	To understand the basic principle of generation	n of Electricity from dif	ferent sources				
2.	To find parameters and characteristics of overhead transmission lines and cables.						
3.	To find different parameters for the construction of overhead transmission line						
4.	To determine the performance of transmission	lines.					
5.	To understand the principle tariff calculation.						
6.	To solve numerical problems on the topics stud	lied.					
Pre-R	Requisite						
1.	Basic Electrical Engineering (ES-EE-101)						
2.	Electric Circuit Theory (PC-EE-301)						
3.	Electromagnetic field theory (PC-EE-303)						
Unit	Content		Hrs	Marks			
1	Basic Concepts:						
	Evolution of Power System and present day Sc	cenario. Structure of					
	power system: Bulk power grid and Micro Grid.						
	Generation of Electric Power:						
	General layout of a typical coal fired power station, Hydro electric 10						
	power station, Nuclear power station, their components and working						
	principles, comparison of different methods of power generation.						
	Introduction to Solar & Wind energy system.						
	Indian Electricity Rule-1956: General Introdu	uction.					
	11	15					

2	 Overhead transmission line: Choice of frequency, Choice of voltage, Types of conductors, Inductance and Capacitance of a single phase and three phase symmetrical and unsymmetrical configurations. Bundle conductors. Transposition. Concept of GMD and GMR. Influence of earth on conductor capacitance. Overhead line construction: Line supports, Towers, Poles, Sag, Tension and Clearance, Effect of Wind and Ice on Sag. Dampers. Corona: Principle of Corona formation, Critical disruptive voltage, Visual critical corona discharge potential, Corona loss, advantages & disadvantages of Corona. 	12	
3	Insulators: Types, Voltage distribution across a suspension insulator string, String efficiency, Arching shield & rings, Methods of improving voltage distribution across Insulator strings, Electrical tests on line Insulators.	05	
4	Cables: Types of cables, cable components, capacitance of single core & 3 core cables, dielectric stress, optimum cable thickness, grading, dielectric loss and loss angle.	04	
5	Performance of lines: Short, medium (nominal, T) and long lines and their representation. A.B.C.D constants, Voltage regulation, Ferranti effect, Power equations and line compensation, Power Circle diagrams.	06	
6	Tariff: Guiding principle of Tariff, different types of tariff.	03	

- 1. Electrical Power System, Subir Roy, Prentice Hall
- 2. Power Systems, A. Ambikapathy, Khanna Publishing House
- 3. Power System Engineering, Nagrath & Kothery, TMH
- 4. Elements of power system analysis, C.L. Wodhwa, New Age International.
- 5. Electrical Power System, Ashfaq Hussain, CBS Publishers & Distributors

Reference books

- 1. Electric Power transmission & Distribution, S.Sivanagaraju, S.Satyanarayana,, Pearson Education.
- 2. A Text book on Power system Engineering, Soni, Gupta, Bhatnagar & Chakrabarti, Dhanpat Rai & Co.
- 3. Electric Power distribution system Engineering, 2nd Edition, T. Gonen, CRC Press.
- 4. www.powermin.nic.in/acts_notification/pdf/ier1956.pdf

Course outcome codes	Statement
EE-502.1	To identify different power system components and its associated terms.
EE-502.2	To explain the mechanical & electrical design of overhead 116 transmission lines.

Course Outcome:

Department of Electrical Engineering

EE-502.3	To illustrate the performance & phenomena of cables,
	transmission lines.
EE-502.4	To analyse different tariff structures

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EE- 502.1	3	3	2	1	1	1	1	-	-	1	-	2
EE- 502.2	3	3	2	2	1	2	2	-	-	1	1	2
EE- 502.3	3	3	3	3	2	2	2	-	3	2	2	3
EE- 502.4	3	3	3	2	3	3	3	-	2	-	3	3
Average	3	3	2	2	2	2	2	-	1	1	1	2

Department of Electrical Engineering

Name	e of the course	CONTROL SYSTEM	[
Cour	se Code: PC-EE-503	Semester: 5th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Teac	hing Scheme	Examination Scheme		
Theor	ry: 3 hrs./week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: hrs./week	Attendance: (05 Marks	
Credi	t Points: 3	End Semester Exam: 7	0 Marks	
Objec				
1.	To find mathematical representation of L11 s	ystems.		
2.	To find the frequency regrange of LTL systems of diffe	erent orders		
3.	To find the frequency response of L11 system	ins of afferent orders		
4.	To understand stability of differentL11 system	IS.		
5.	To analyze L I systems with state variables.			
Dra D	1 to solve problems of mathematical modellin	g and stability of L11 sy	stems	
Pre-R	equisite			
1.	Electric Circuit Theory (DC EE 201)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic field theory (PC-EE-303)			
4.	Contont		IIma	Manka
Unit	Content Introduction to control systems		Hrs	Marks
	Introduction to control system:	control Effects of		
1	foodback Objectives of control system Da	finition of linear and	04	
1	nonlinear systems Elementery concent	of consistivity and	04	
	robustness Types of control systems	Sorvomochanisms and		
	regulators examples offeedback control systems, s	eme Transfer function		
	concept Pole and Zeroes of a transfer fu	unction Properties of		
	Transfer function	inction. Tropertiesor		
	Mathematical modeling of dynamic system	s:		
	Translational systems. Rotational systems.	Mechanicalcoupling.		
	Liquid level systems. Electrical analogy of S	Spring-Mass-Dashpot		
2	system. Block diagram representation of co	ontrol systems. Block	08	
	diagram algebra. Signal flow graph. Mason's	gain formula.		
	Control system components: Potentiometer,	Synchros, Resolvers,		
	Position encoders. DC and ACtacho-generate	ors. Actuators. Block		
	diagram level description of feedback	control systems for		
	positioncontrol, speed control of DC motors,	temperature control,		
	liquid level control, voltage control of anAlter	rnator.		
	Time domain analysis:			
3	Time domain analysis of a standard secon	nd order closed loop		
	system. Concept of undamped natural f	frequency, damping,		
	overshoot, rise time and settling time. Depend	dence of time domain	08	
	performance parameters on natural frequenc	y and damping ratio.		
	Step and Impulse response of first and second	l order systems. Effects		
	of Pole and Zeros on transient response. Stab	ility by pole location.		
	Routh-Hurwitz criteria and applications.	. –		
	Error Analysis: Steady state errors in contro	l systems due to step.		

	ramp and parabolic inputs. Concepts of system types and error		
	constants.		
	Stability Analysis:		
4	Root locus techniques, construction of Root Loci for simple systems.		
	Effects ofgain on the movement of Pole and Zeros.	10	
	Frequency domain analysis of linear system: Bode plots, Polar		
	plots, Nichols chart, Concept ofresonance frequency of peak		
	magnification. Nyquist criteria, measure of relative stability, phase		
	andgain margin. Determination of margins in Bode plot. Nichols		
	chart. M-circle and M-Contours inNichols chart.		
	Control System performance measure:		
5	Improvement of system performance through compensation.	05	
	Lead, Lag and Lead- lag compensation, PI, PD and PID control.		
	State variable Analysis:		
	Concepts of state variables. State space model. Diagonalization of		
6	State Matrix. Solution of state equations. Eigenvalues and Stability	10	
	Analysis. Concept of controllability and observability.		
	Pole-placement by state feedback.		
	Discrete-time systems. Difference Equations. State-space models of		
	linear discrete-time systems.		
	Stability of linear discrete-time systems.		

- 1. Modern Control Engineering, K. Ogata, 4th Edition, Pearson Education
- 2. Control System Engineering, I. J. Nagrath & M. Gopal. New AgeInternational Publication.
- 3. Control System Engineering, D. Roy Choudhury, PHI
- 4. Control System, A. Ambikapathy, Khanna Publishing House
- 5. Automatic Control Systems, B.C. Kuo & F. Golnaraghi, 8th Edition, PHI

Reference books

- 1. Control Engineering Theory & Practice, Bandyopadhyaya, PHI
- 2. Control systems, K.R. Varmah, Mc Graw hill
- 3. Control System Engineering, Norman Nise, 5th Edition, John Wiley & Sons
- 4. Modern Control System, R.C. Dorf & R.H. Bishop, 11th Edition, PearsonEducation.
- 5. Control System Design, C. Goodwin Graham, F. Graebe F. Stefan, Salgado.E. Mario, PHI
- 6. Modeling & Control of dynamic system, Macia&Thaler, Thompson
- 7. Modern Control Technology Components & Systems, 3rd edition, C.T Kilian, Cengage Learning
- 8. Modern Control Engineering, Y. Singh & S. Janardhanan, Cengage Learning
- 9. Control System Engineering, R. Anandanatarajan& R. Ramesh Babu, ,SCITECH
- 10. Automatic Control system, A. William, Wolovich, Oxford

Course Outcome:

SL NO.	Statement
EE503.1	To describe control system components and mathematical modelling of dynamic system
EE503.2	To solve problems related to time domain analysis and error analysis
EE503.3	To explain stability of linear systems in time domain
EE503.4	To asses stability of linear systems in frequency domain
EE503.5	To design a control system having improved performance through different types of controllers

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
PC-EE- 503.1	3	3	2	2	2	-	-	-	-	-	-	2	3	2
PC-EE- 503.2	3	3	2	2	2	-	-	-	-	-	-	2	3	2
PC-EE- 503.3	С	С	2	2	2	-	-	-	-	-	-	2	3	2
PC-EE- 503.4	З	S	2	2	2	-	-	-	-	-	-	2	3	2
PC-EE- 503.5	3	З	2	2	2	-	-	-	-	-	-	2	3	2
Averag e	3	3	2	2	2	-	-	-	-	-	-	2	3	2

Name of the course	POWER ELECTRONICS
Course Code: PC-EE-504	Semester: 5 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Mid Semester Exam: 15 Marks
Tutorial: 0hr/week	Assignment & Quiz: 10 Marks
Practical: hrs./week	12Attendance: 05 Marks
Credit Points: 3	End Semester Exam: 70 Marks
Objective:	

Department of Electrical Engineering

1.	To understand the functioning and characteristics of power switching devices.										
2.	To understand the principle of operation of converters.										
3.	To understand different triggering circuits and techniques of commut	ation of SCR									
4.	To find external performance parameter of converters.										
5.	To analyze methods of voltage control, improvement of power factor and reduction of harmonics										
	of the converter										
6.	To solve numerical problems of converters										
Pre-R	equisite										
1.	Electric Circuit Theory (PC-EE-301)										
2.	Analog Electronics (PC-PC-EE-303)										
3.	Electromagnetic field theory (PC-EE-303)										
4.	Digital Electronics (PC-EE-402)										
Unit	Content	Hrs	Marks								
	Introduction:	~									
	Concept of power electronics, application of power electronics,										
1	electronics converters power electronics systems power diodes	04									
	power transistors power MOSFETS IGBT and GTO										
	PNPN devices:										
	Thyristors, brief description of members of Thyristor family with										
2	symbol, V-Icharacteristics and applications. I wo transistor model of SCP SCP turn on methods switching characteristics gate	05									
	characteristics ratings SCR protection series and paralleloperation										
	gate triggering circuits, different commutation techniques of SCR.										
	Phase controlled converters:										
3	Principle of operation of single phase and three phase half wave,										
	half controlled, full controlled converters with R, R-L and RLE										
	loads, effects of freewheeling diodes and source inductance on the	06									
	performance of converters. External performance parameters of										
	converters, techniques of power factor improvement, single phase										
	and three phase dual converters										
	DC-DC converters:										
4	Principle of operation, control strategies, step up choppers, types of	05									
	choppers circuits based on quadrant of operation, performance										
	parameters, multiphase choppers.										
	Inverters:										
5	Definition, classification of inverters based on nature of input	10									
	source, wave shape of outputvoltage, method of commutation &										
	connections. Principle of operation of single phase andthree phase										
	bridge inverter with R and R-L loads, performance parameters of										
	inverters, methods of voltage control and harmonic reduction of										
	inverters.										
	Resonant Pulse Converters:										
	Introduction, Series Resonant inverter, Parallel Resonant inverter,										
6	Zero-Current Switching Resonant converters, Zero-Voltage	05									
	Switching Resonant converter, Two quadrant Zero-Voltage										
	Switching Resonant converter, Resonant DC link inverter.										
7	Applications:	05									
	Speed control of AC and DC motors. HVD@21ansmission. Static	05									
	circuit breaker, UPS, static VAR controller.										

Department of Electrical Engineering

Text books:

- 1. Power Electronics, M.H. Rashid,4th Edition, Pearson
- 2. Power Electronics, P.S. Bimbhra, Khanna Publishing House.
- 3. Power Electronics, V.R. Moorthi, Oxford.
- 4. Power Electronics, M.D. Singh and K.B. Khanchandani, Tata Mc Graw Hill.

Reference books

- 1. Modern Power Electronics & AC drives, B.K. Bose, Prentice Hall
- 2. Power Electronics, Mohan, Undeland& Riobbins, Wiley India
- 3. Element of power Electronics, Phillip T Krein, Oxford.
- 4. Power Electronics systems, J.P. Agarwal, Pearson Education.
- 5. Analysis of Thyristor power conditioned motor, S.K. Pillai, University Press.
- 6. Power Electronics, M.S. Jamal Asgha, PHI.
- 7. Power Electronics : Principles and applications, J.M. Jacob, Thomson

Course Outcome:

Course outcome codes	Statement
PC-EE-504.1	To state the characteristics of different power electronic switches along with their turn-on, turn-off, triggering and protection circuits.
PC-EE-504.2	To classify various phase controlled rectifiers.
PC-EE-504.3	To demonstrate working of phase controlled converters.
PC-EE-504.4	To explain the operation of AC voltage controller & cycloconverters.
PC-EE-504.5	To choose different power converters in commercial and industrial applications

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PC-EE	3	2	3	2	1	1	1	-	1	1	1	3
504.1												
PC-EE	2	3	2	2	2	1	1	-	1	1	1	3
504.2												
PC-EE	2	2	2	2	3	1	1	-	1	1	1	2
504.3												
PC-EE	3	3	3	2	1	1	1	-	1	1	1	2
504.4												
						122						
PC-EE	2	2	2	2	2	1	3	-	1	1	1	3
504.5												

Department of Electrical Engineering

Avera	age 2	2	2	2	2	1	1	0	1	1	1	3
Name	e of the cou	rse					ELECTR		HINE-IIL	ABORAT	ORY	
Cours	se Code: PC	-EE 591					Semest	er: 5 th				
Durat	tion: 6 mor	nths					Maximu	um mar	ks:100			
Teach	ning Schem	e					Examin	ation sc	heme:			
Theo	ry: 0 hr/we	ek					Continu	ious Int	ernal As	ssessmer	nt:40	
Tutor	rial: 0 hr/we	eek					Externa	l Assess	ment: 6	50		
Pract	ical: 2 hrs/\	veek										
Credi	t Points:1											
					-							
		<u> </u>		La	borator	y Exp	eriments	<u>:</u>				
1.	Different	methods	s of star	ting of a	a 3 phas	se Cag	e Inducti	on Mot	or & the	eir compa	rison [D	OL, Auto
	transform	<u>ner & Stai</u>	-Delta]	6 . 1								
2.	Study of e	equivaler	nt circui	t of thre	e phas	e Indu	ction mo	tor by n	io load a	and block	ed rotor	
	test.											
3.	Study of p	<u>performa</u>	ince of v	vound i	rotor In	ductio	<u>n motor</u>	under lo	oad.			
4.	Study of p	performa	ince of t	hree pr	nase squ	urrel-	cage Ind	uction n	notor -d	letermina	ation of	
	Iron-loss,	Triction a	<u>swinda</u>	<u>ge loss.</u>				hu diffe		ath a da Q	+	
5.	Speed co	ntrol 01 3	fraguer	squirrei	cage in	auctio	on motor	by diffe	erent me		their coi	mparisor
6	[voitagec	ontrol &	<u>rrequer</u>	icy con	.[0].	ionm	ator by r	tor roc	istanco	control		
<u> </u>	Determin	ation of	rogulati	on of S	<u>nchron</u>		achino h	V	Istance	CONTION		
7.	a Potier	eactance	o mothe		, nem on	ious ii		у				
I	h Synchr	onous Im	nedanc	e meth	od							
8	Determin	ation of	equivale	ent circ	uit nara	meter	s of a sin	gle nha	se Induc	tion mot	or	
9.	Load test	on single	e phase	Inducti	on mot	or to c	btain the	e perfor	mance of	character	istics.	
10.	To deterr	nine the	direct a	xis resis	stance [Xd] &	quadratu	ire reac	tance [X	[] of a 3	phase	
-	synchron	ous macl	nine bvs	lip test	L		•		L			
11.	Load test	on wour	nd rotor	Inducti	on mot	or to o	obtain th	e perfor	mance	characte	ristics.	
12.	To make	connecti	on diagr	am to f	ull pitch	n & fra	actional s	lot wind	ling of 1	8 slot sq	uirrel cag	ge
	Induction	motor f	or6 pole	s & 4 p	ole ope	ration	l		-	•		-
13.	To study	the perfo	ormance	of Ind	uction g	enera	tor					
14.	Parallel o	peration	of 3 ph	ase Svn	chrono	us gen	erators					

15. V-curve of Synchronous motor

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference book:

- 1. Laboratory experiments on Electrical Machines, C.K. Chanda, A. Chakrabarti, Dhanpat Rai & Co.
- 2. Laboratory manual for Electrical Machines, D.P. Kothari, B.S.Umre, I K International Publishing House Pvt. Ltd.

Course Outcome:

Course outcome codes	Statement
PC-EE 591.1	Identify appropriate equipment and instruments for the experiment.
PC-EE 591.2	Test the instrument for application to the experiment.
PC-EE 591.3	Construct circuits with appropriate instruments and safety precautions.
PC-EE 591.4	Validate different characteristics of single phase Induction motor, three phase Induction motor, Induction generator and synchronous motor , methods of speed control of Induction motors and parallel operation of the 3 phase Synchronous generator.

	PO	PO	PO	PO	PO5	PO	PO	PO	PO	PO1	PO1	PO1
	1	2	3	4		6	7	8	9	0	1	2
PC-EE	3	2	3	2	1	1	1	-	1	1	1	3
591.1												
PC-EE	2	3	2	2	2	1	1	-	1	1	1	3
591.2												
PC-EE	2	2	2	2	3	1	1	-	1	1	1	2
591.3												
PC-EE	3	3	3	2	1	1	1	-	1	1	1	2
591.4												
Averag					1.7							
e	2.5	2.5	2.5	2	5	1	1	-	1	1	1	2.5

Department of Electrical Engineering

Name	of the course	POWER SYSTEM-I LABORATORY					
Cours	e Code: PC-EE 592	Semester: 5 th					
Durat	ion: 6 months	Maximum marks:100					
Teach	ing Scheme	Examination scheme:					
Theor	y: 0 hr/week	Continuous Internal Assessment:40					
Tutori	ial: 0 hr/week	External Assessment: 60					
Practi	cal: 2 hrs/week						
Credit	: Points:1						
	Laboratory Exp	eriments:					
1.	Determination of the generalized constants A	.B, C, D of long transmission line and regulation of a					
	3-Φ transmission line model						
2.	Study of distribution system by network analy	zer.					
3.	Measurement of earth resistance by earth tes	ter.					
4.	Determination of dielectric strength of insulat	ing oil.					
5.	Determination of breakdown strength of solid	l insulating material					
6.	Determination of parameter of 3- Φ transmiss	sion line model by power circle diagram					
7.	. Study of different types of insulator.						
8.	8. Study of active and reactive power control of alternator.						
9.	Study and analysis of an electrical transmissio	n line circuit with the help of software					
10.	Determination of dielectric constant, tan delta	a, resistivity of transformer oil.					

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome:

PC-EE-	Demonstrate performance of transmission line and distribution line
592.1	
PC-EE-	Construct line support for a particular transmission line.
592.2	
PC-EE-	Evaluate different methods of active and reactive power control.
592.3	
PC-EE-	Solve the reliability of different components of transmission line and distribution line.
592.4	

SUBJECT	COs]	PROGF	RAM O	UTCO	MES(P	Os)			
CODE		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PC-EE-592	PC-EE- 592.1	3	3	2	1	-	2	-	-	-	-	2	2
	PC-EE- 592.2	2	-	3	1	-	-	-	-	-	-	2	3
	PC-EE- 592.3	2	3	-	3	-	-	-	-	-	-	2	2
	PC-EE-592.4	2	3	-	3	-	-	-	-	-	-	2	2
	AVERAGE	2.25	2.25	1.25	2 125	-	0.5	-	-	-	-	2	2.25

Name	of the course	CONTROL SYSTEMLABORATORY					
Cours	e Code: PC-EE 593	Semester: 5 th					
Durat	ion: 6 months	Maximum marks:100					
Teach	ing Scheme	Examination scheme:					
Theor	y: 0 hr/week	Continuous Internal Assessment:40					
Tutor	ial: 0 hr/week	External Assessment: 60					
Practi	cal: 2 hrs/week						
Credit	t Points:1						
	Laboratory Exp	eriments:					
1.	Familiarization with MAT-Lab control system t	ool box, MAT-Lab- simulink tool box & PSPICE					
2.	Determination of Step response for first orde	er & Second order system with unity feedback with					
	the help of CRO & calculation of control s	ystem specification, Time constant, % peak					
	overshoot, settling time etc. from theresponse	е.					
3.	Simulation of Step response & Impulse respor	ise for type-0, type-1 & Type-2 system with unity					
	feedback usingMATLAB & PSPICE.						
4.	Determination of Root locus, Bode plot, Nyqu	ist plot using MATLAB control system tool box for a					
	givensystem & stability by determining contro	l system specification from the plot.					
5.	Determination of PI, PD and PID controller act	ion of first order simulated process.					
6.	Determination of approximate transfer function	ons experimentally from Bode plot.					
7.	Evaluation of steady state error, setting time,	percentage peak overshoot, gain margin, phase					
	margin withaddition of Lead, Lag, Lead-lag cor	mpensator.					
8.	Study of a practical position control system	obtaining closed step responses for gain setting					
	corresponding toover-damped and under-da	mped responses. Determination of rise time and					
	peak time using individualizedcomponents by	y simulation. Determination of un-damped natural					
	frequency and damping ratio fromexperiment	al data.					
9.	9. Analysis of performance of Lead, Lag and Lead-Lag compensation circuits for a given syste						
	using simulation.						
10.	Determination of Transfer Function of a given	system from State Variable model and vice versa.					
11.	Analysis of performance of a physical system	using State variable technique by simulation.Study					
	ofstep response and initial condition response	e for asingle input, two-output system in SV form by					
	simulation.						

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome:

PCEE593.1	Able to identify solutions related with basic fundamentals of MATLAB.
PCEE593.2	Able to find solutions of step and impulse responses for first order and second order system and also type 0, type 1, type 2 system in MATLAB and determine different parameters related with the responses.
PCEE593.3	Able to investigate the stability of a system both in time domain and frequency domain using Root Locus, Bode plot, Nyquist plot.
PCEE593.4	Able to design different types of controller and compensator using MATLAB toolbox

CO-PO Mapping:

COs		PROGRAM OUTCOMES(POs)										
	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
PCEE593.1	3	3	3	-	3	-	-	-	3	1	-	-
PCEE593.2	3	3	3	-	3	-	-	-	3	1	-	-
PCEE593.3	3	3	3	-	3	-	-	-	3	1	-	-
PCEE593.4	3	3	3	-	3	-	-	-	3	1	-	-
AVERAGE	3	3	3	-	3	-	-	-	3	1	-	-

Name	of the course	POWER ELECTRONICS LABORATORY					
Cours	e Code: PC-EE 594	Semester: 5 th					
Durat	ion: 6 months	Maximum marks:100					
Teach	ing Scheme	Examination scheme:					
Theor	y: 0 hr/week	Continuous Internal Assessment:40					
Tutor	al: 0 hr/week	External Assessment: 60					
Practi	cal: 2 hrs/week						
Credit	: Points:1						
	Laboratory Exp	eriments:					
1.	Study of the characteristics of an SCR.						
2.	Study of the characteristics of a Triac						
3.	Study of different triggering circuits of an SCR						
4.	4. Study of firing circuits suitable for triggering SCR in a single phase full controlled bridge.						
5.	Study of the operation of a single phase full co	ontrolled bridge converter with R and R-L load.					
6.	Study of performance of single phase half co converters.	ontrolled symmetrical and asymmetrical bridge					
7.	Study of performance of step down chopper v	vith R and R-L load.					
8.	Study of performance of single phase control	led converter with and without source inductance					
	(simulation)						
9.	Study of performance of step up and step dov	wn chopper with MOSFET, IGBT and GTO as switch					
	(simulation)						
10.	Study of performance of single phase half con	trolled symmetrical and asymmetrical bridge					
	converter.(simulation)						
11.	Study of performance of three phase controlle	ed converter with R & R-L load. (simulation)					
12.	Study of performance of PWM bridge inverter	using MOSFET as switch with R and R-L load.					
13.	Study of Zero Voltage Switching Resonant co	onverter and Zero Current Switching Resonant					
	Converter andto plot its output waveforms.	-					
14.	Study the speed control of universal motor to	plot speed v/s α					

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference book:

1. Power Electronics Laboratory: Theory, Practice and Organization, O.P.Arora, Om Prakash

Arora, Alpha science International.

Course outcome:

PCEE594.1	Analyse the response of any power electronics devices.
PCEE594.2	Troubleshoot the operation of a power electronics circuit.
PCEE594.3	Choose suitable power electronic devices for any given application.
PCEE594.4	Know how to control and convert output signal as per requirements
PCEE594.5	Develop any power electronics circuits as needed in operation

SUBJEC	COs	PROGRAM OUTCOMES(POs)											
T CODE		РО	РО	PO	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1
		1	2	3	4	5	6	7	8	9	0	1	2
PCEE59	PCEE594.1	3	-	-	1	-	-	-	-	-	-	-	-
4	PCEE594.2	-	1	-	2	-	-	-	-	-	-	1	-
	PCEE594.3	2	1	-	2	-	-	-	-	1	-	-	-
	PCEE594.4	2	-	-	2	-	-	-	-	1	-	-	-
	PCEE594.5	2	1	-	2	-	-	-	-	-	-	-	-
	AVERAG	1.8	0.6	-	1.8	-	-	-	-	0.4	-	-	-
	Е												

Department of Electrical Engineering

Name	e of the course	DATA STRUCTURE	& ALGORIT	HM				
Cour	se Code: OE-EE-501A	Semester: 5 th						
Dura	tion: 6 months	Maximum Marks: 100						
Teac	hing Scheme							
Theor	ry: 3 hrs./week	Mid Semester Exam: 1	5 Marks					
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks					
Practi	cal: hrs./week	Attendance:	05 Marks					
Credi	t Points: 3	End Semester Exam: 7	0 Marks					
Objec	tive:							
1.	To understand the basics of abstract data types.	•						
2.	To understand the principles of linear and nonly	linear data structures.						
3.	To build an application using sorting and searc	ching						
Pre-R	equisite							
1	Programing for problem solving (ES-CS 201)							
2	Mathematics (BS-M-102)							
2.	Mathematics (BS-M-202)							
J.	Content		Hrs	Marks				
01110	Introduction: Basic Terminologies: Elementary	v Data Organizations	1115					
	Data Structure Operations: insertion del	etion traversal etc.						
1	Analysis of an Algorithm Asymptotic Notatic	10						
1	Analysis of an Algorithm, Asymptotic Notatio	ons, Thile-Space trade	10					
	on. Searching: Linear Search and Binary Sea	arch Technique sand						
	their complexity analysis.	ange Algorithms and						
	their complexity analysis Applications of	Staalaa Europaaian						
2	their complexity analysis, Applications of	Stacks: Expression						
2	Conversion and evaluation - correspondin	ng algorithms and	10					
	complexity analysis. AD1 queue, Types of Qu	ieue: Simple Queue,	10					
	Circular Queue, Priority Queue; Operations	s on each types of						
	Queues: Algorithms and their analysis.							
2	Linked Lists: Singly linked lists: Represen	ntation in memory,						
3	Algorithms of several operations: Traversing, S	Searching, Insertion						
	into, Deletion from linked list; Linked represent	entation of Stack and	10					
	Queue, Header nodes, Doubly linked list: o	operations on it and						
	algorithmic analysis; Circular Linked Lists:	all operations their						
	algorithms and the complexity analysis.	Trees: Basic Tree						
	Terminologies, Different types of Trees: Bina	ary Tree, Threaded						
	Binary Tree, Binary Search Tree, AVL Tree;							
	each of the trees and their algorithms with co							
	Applications of Binary Trees. B Tree, B+							
	algorithms and analysis							
	Sorting and Hashing: Objective and properties	s of different sorting						
4	algorithms: Selection Sort, Bubble Sort, Insert	tion Sort, Quick Sort,						
	Merge Sort, Heap Sort; Performance and Com	parison among all the	10					
	methods, Hashing. Graph: BasicTerminologies	s and Representations.						
	Graph search and traversal algorithms and complexity analysis.							

- 1. Data Structures and Program Design In C, 2/E by Robert L. Kruse, Bruce P. Leung. PHI
- 2. Data Structure & Algorithms Using C, R.S. Salaria, 5th Ed., Khanna Publishing House
- 3. Data Structures in C, Aaron M. Tenenbaum. Pearson.
- 4. Data Structure, S. Lipschutz.. Mc Graw Hill.

Reference books

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, MIT press
- 2. Expert Data Structures with C++, R.B Patel, Khanna Publishing House
- 3. Fundamentals of Data Structures of C, Ellis Horowitz, SartajSahni, Susan Andersonfreed, MIT press
- 4. Data Structures Using C, ReemaThareja. Oxford University press
- 5. Data Structure Using C, 2/e by A.K. Rath, A. K. Jagadev. SCITECH
- 6. Data Structures through C, YashwantKanetkar, BPB Publications.

Course Outcome:

After completion of this course, the learners will be able to CO1: Understand the basic data structures and their applications.

CO2: Apply Linear Data Structure that can be implemented using different data structures.

CO3: Analyze the different sorting and searching algorithms mentioned in the course, their implementation and performance analysis.

CO4: Construct and evaluate algorithms to solve a problem by choosing an appropriate data structure.

	Tapping	•											
	Data Structure & Algorithm												
CO'S		PO'S											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2		3	-	2	1	-	2	-	3	3	
CO2	3	2	1	1	1	2	3	1	1	2	2	3	
CO3	3	2	2	2	1	2	3	3	3	3	2	2	
CO4	3	3	2	-	-	-	3	-	-	3	-	3	
Avg	3.00	2.25	1.67	2.00	1.00	2.00	2.50	2.00	2.00	2.67	2.33	2.75	

Name	e of the course	OBJECT ORIENTEI) PROGRAM	IMING
Cours	se Code: OE-EE-501B	Semester: 5 th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Teach	ning Scheme	Examination Scheme		
Theor	ry: 3 hrs./week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: hrs./week	Attendance:	05 Marks	
Credit	t Points: 3	End Semester Exam: 7	0 Marks	
Objec	tive:			
1.	To understand simple abstract data types			
2.	To understand features of object-oriented des	n, polymorphi	sm,	
	inheritance			
3.	To understand common object-oriented desig	n patterns		
4.	To design applications with an event-driven g			
Pre-R	equisite			
1.	Programing for problem solving (ES-CS 201)			
Unit	Content		Hrs	Marks
1	Abstract data types and their specification. H	Iow to implement an	08	
	ADT. Concrete state space, concrete invarian	it, abstraction function.		
	Implementing operations, illustrated by the Te	ext example.		
2	Features of object-oriented programming.	Encapsulation, object	08	
	identity, polymorphism - but not inheritance.	1 5		
3	Inheritance in OO design. Design pattern	s. Introduction and	08	
	classification. The iterator pattern.			
	Model-view-controller pattern. Commands	as methods and as	08	
4	objects. Implementing OO language features.	Memory management.		
5	Generic types and collections GUIs. Graphics	al programming with	08	
	Scale and Swing . The software development	process		

- 1. Mastering Object-Oriented Programming Using C++, R.S. Salaria, Khanna Publishing House.
- 2. Object Oriented Modelling and Design, Rambaugh, James Michael, Blaha Prentice Hall India.
- 3. The complete reference-Java2, Patrick Naughton, Herbert Schildt, TMH
- 4. Core Java For Beginners, R.K. Das, VIKAS PUBLISHING
- 5. Java How to Program, Deitel and Deitel, 6th ED, Pearson

Reference books

- 1. Object Oriented System Development, Ali Bahrami, McGraw Hill.
- 2. Ivor Horton's Beginning Java 2 SDK Wrox
- 3. Programming With Java: A Primer, E. Balagurusamy 3rd Ed., TMH

Course Outcome:

CO1: Students able to relate and understand the basic Object Oriented concepts.

CO2: Students learn to solve problem statements by **applying** Object Oriented Programming concepts.

CO3: Students **categorize** the implementation of various features of object oriented programming according to real world problems.

CO4: Students able to **assess** the **pros** and **cons** of each feature of object oriented programming.

CO5: Students able to **design** different application based software tools.

	Object Oriented Programming												
CO'S	PO'S												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	3	3	3	3	_	_	3	_	2	3	_	3	
CO2	-	3	2	_	_	_	_	2	3	3	3	_	
CO3	3	3	3	3	3	2	_	_	2	_	_	3	
CO4	-	2	3	3	-	_	-	_	3	3	3	2	
CO5	2	2	3	_	3	2	2	2	3	3	1	—	
Average	2.67	2.60	2.80	3.00	3.00	2.00	2.50	2.00	2.60	3.00	2.33	2.67	

Name	e of the course	COMPUTER ORGA	NISATION	
Cour	se Code: OE-EE-501C	Semester: 5 th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Teach	ning Scheme	Examination Scheme		
Theor	ry: 3 hrs./week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: hrs./week	Attendance:	05 Marks	
Credi	t Points: 3	End Semester Exam: 7	0 Marks	
Objec	tive:			
1.	To understand the analysis and design of varia	ous digital electronic circ	cuits.	
2.	To understand how Computer Systems work	& its basic principles		
3.	To understand how I/O devices are being accounted and the second	tc.		
Pre-R	equisite			
1.	Programing for problem solving (ES-CS 201)			
2.	Digital Electronics (PC-EE 402)			
Unit	Content		Hrs	Marks
1	Basic organization of the stored program con	mputer and operation	08	
	sequence for execution of a program. Role of	operating systems and		
	compiler/assembler. Fetch, decode and exec	ute cycle, Concept of		
	operator, operand, registers and storage	, Instruction format.		
	Instruction sets and addressing modes. Con	monly used number		
	systems. Fixed and floating point representati	on of numbers.		
2	Overflow and underflow. Design of adders -	ripple carry and carry	08	
	look ahead principles. Design of ALU. Fixe	d point multiplication -		
	Booth's algorithm. Fixed point division -	Restoring and non-		
	restoring algorithms. Floating point - IEEE 7	54 standard.		
3	Memory unit design with special emphasis of	onimplementation of	10	
	CPU-memory interfacing. Memory organizat	tion, static and dynamic		
	memory, memory hierarchy, associative men	mory. Cache memory,		
	Virtual memory. Data path design for read/wi	rite access.		

	Design of control unit - hardwired and microprogrammed control.	10	
4	Introduction to instruction pipelining. Introduction to RISC		
	architectures. RISC vs CISC architectures. I/O operations - Concept		
	of handshaking, Polled I/O, interrupt and DMA.		

Text books:

- 1. Computer System Architecture, Mano, M.M. PHI.
- 2. Computer Architecture & Organisation, Hayes J. P, McGraw Hill,
- 3. Computer Organisation & Design, Chaudhuri P. Pal, PHI,
- 4. Computer Organization & Architecture, Rajaraman, PHI

Reference books

- 1. Computer Architecture, BehroozParhami, Oxford University Press
- 2. Microprocessors and Microcontrollers, N. senthil Kumar, M. Saravanan, S. Jeevananthan , OUP
- 3. Computer Organization & Architecture , P N BasuVikas Pub
- 4. Computer Organization & Architecture, B.Ram, Newage Publications
- 5. Computer Organisation, Hamacher, McGraw Hill,

Course Outcome:

CO1: analyze the designing process of combinational and sequential circuits

CO2: express arithmetic, logic and shift micro operations in symbolic form and their corresponding circuits at a register transfer level and apply it for the **design** and implementation of ALU.

CO3: identify the addressing modes used in macro instructions and develop micro code for typical instructions in symbolic form.

CO4: understand different input output devices and the control circuit.

	Computer Organization											
CO'S					Р	'O'S						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	-	-	-	-	2	2
CO2	2	2	-	2		2	2	2		1	2	2
CO3	2	2	2	3	1	3	2	3	1	1	3	2
CO4	1	1	-	1	1	2	-	1	1	1	1	2
Avg	2.00	2.00	2.00	2.00	1.33	2.50	2.00	2.00	1.00	1.00	2.00	2.00

Name of the course	HIGH VOLTAGE ENGINEERING
Course Code: PE-EE-501A	Semester: 5 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	3Examination Scheme
Theory: 3 hrs./week	Mid Semester Exam: 15 Marks

Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks							
Practi	cal: hrs./week	Attendance:	05 Marks							
Credi	t Points: 3	End Semester Exam: 7	70 Marks							
Objec	ctive:									
1.	To understand the breakdown phenomenon of	f solid, liquid and gases.								
2.	To understand the method of generation of his	gh voltage AC and DC.								
3.	To understand measurement techniques of his	gh voltage and current								
4.	To understand the over voltage phenomenon a	and insulation coordinati	on in Electric p	ower						
	systems		1							
5.	To understand different methods of high volta	age testing.								
6	To solve numerical problems of breakdown p	henomena generation ar	d massurament	ofhigh						
0.	voltage and currents over voltage phenomena	and high voltage testing		or ingi						
Dro P		a and high voltage testing	2							
1	Electric Circuit Theory (DC EE 201)									
<u>1</u> .	Electromagnetic field theory (PC EE 202)									
2.	Electromagnetic field theory (FC-EE-505)									
3.	Electric Machine-1 (FC-EE-401)	EE 402)								
4.	Electrical and Electronics measurement (PC-I	2E-403)	II	Manles						
Unit		Content								
	Breakdown pnenomena:	с <u>с</u> і								
1	Breakdown of Gases: Mechanism of Breakdo	own of gases, Charge	10							
1	multiplication, Secondaryemission, Townso	end Theory, Streamer	10							
	Theory, Paschen's Law, Determination of	Minimumbreakdown								
	voltage, Breakdown in non-uniform field,	Effect of polarity on								
	corona inceptionand break down voltage.									
	Partial Discharge: definition and development	t in solid dielectric.								
	Break Down of Solids: Intrinsic breakdov	vn, Electromechanical								
	break down, Thermalbreakdown, Streamer Br	reakdown.								
	Breakdown of Liquid: Intrinsic Break down	n, Cavitation Theory,								
	Suspended particle Theory.									
	Breakdown in Vacuum: Non-metallic electro	n emission mechanism,								
	Clump mechanism,									
	Effect of pressure on breakdown voltage.									
	Generation of High Voltage and Currents									
-	Generation of highDC and AC voltages: half	f wave rectifier circuit,								
2	Cockroft-Walton voltage multiplier circuit,	Electrostatic generator,	08							
	Cascaded transformers, Series resonant circui	t.								
	Generation of Impulse voltages and currents:	standard impulse wave								
	shapes, Multistage impulse generators, ge	neration of switching								
	surges, generation of impulse currents, trip	pping and control of								
	impulse generators.									
	Measurement of High Voltage and Current	ts								
3	Sphere gap, Uniform field spark gap, Ro	od gap, Electrostatic								
	voltmeter. Generating voltmeter. Impulse	voltage measurements	08							
	using voltage dividers. Measurement of Hi	igh DC and Impulse								
	currents. Cathode ray oscillographs for impu	lse voltage and current								
	measurements.									
1			1	1						

		1	
	Over voltage phenomenon and insulation coordination in		
4	Electric power systems:		
	Lightning Phenomena, Electrification of cloud, Development of		
	Lightning Stroke, lightning induced over voltage, direct stroke,		
	indirect stroke.	08	
	Protection of Electrical Apparatus against over voltage, Lightning		
	Arrestors, Valve Type, Metal Oxide arresters, Expulsion type. Effect		
	of location of lightning arresters on protection of transformer.		
	Protection of substation, Ground wires.		
	Insulation Co-ordination, Basic Insulation level. Basic Impulse		
	level, Switching Impulse level. Volt time characteristics of		
	protective devices, Determination of Basic Impulse level of		
	substation equipment.		
	High Voltage Testing:		
5	Various standards for HV Testing of electrical apparatus, IS, IEC		
	standards, Testing of insulators and bushings, testing of isolators and	06	
	circuit breakers, testing of cables, power transformers. High voltage		
	laboratory layout, indoor and outdoor laboratories, testingfacility		
	requirements, safety precautions in H. V. Labs.		

JIS GROUP

- 1. High Voltage Engineering, C.L. Wadhawa, New Age International Publishers.
- 2. High Voltage Engineering, M.S. Naidu & V. Kamraju, Tata MC Graw Hill publication.

Reference books

- 1. High-Voltage Engineering : theory and practice, Mazen Abdel-Salam; Hussein Anis; Ahdab El-Morshedy; RoshdyRadwan, New York, N.Y.: Marcel Dekker, ©2000.
- 2. High Voltage Engineering, E. Kuffel, W.S. Zaengl, J. Kuffel, 2nd edition, Butterworth-Heinemann.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain breakdown phenomenon of gas, liquid and solid and vacuum
- 2. Suggest methods for generation and measurement of high voltage and currents.
- 3. Determine the basic insulation level of substation equipment.
- 4. Apply methods for protection of electrical apparatus against over voltage
- 5. Test insulators, bushings, isolators, circuit breakers, cables and power transformers.
- 6. Solve numerical problems of breakdown phenomena, generation and measurement of high voltage and currents, over voltage phenomena and high voltage testing.

	Computer Organization											
CO'S	PO'S											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	-	-	-	-	2	2
CO2	2	2	-	2	-	2	2	2		1	2	2
CO3	2	2	2	3	1	2 135	2	2	1	1	2	2

Department of Electrical Engineering

CO4	1	1	-	1	1	2	-	2	1	1	1	2
CO5	2	2	-	2	-	2	2	2		1	1	2
CO6	2	2	2	2	2	2	2	2	1	1	1	2
Avg	2.00	2.00	2.00	2.00	1.50	2.00	2.00	2.00	1.00	1.00	1.50	2.00

ks

3	General layout, Components of Diesel power plant, Performance of		
	diesel power plant, fuelsystem, lubrication system, air intake and		
	admission system, supercharging system, exhaustsystem, diesel		
	plant operation and efficiency, heat balance, Site selection of diesel	08	
	powerplant, Comparative study of diesel power plant with		
	steampower plant.		
	Gas turbine power plant:		
	Layout of gas turbine power plant, Elements of gas turbine power		
	plants, Gas turbine fuels, cogeneration, auxiliary systems such as		
	fuel, controls and lubrication, operation andmaintenance, Combined		
	cycle power plants, Site selection of gas turbine power plant.		
	Nuclear power plant:		
4	Principles of nuclear energy, Lay out of nuclear power plant, Basic		
	components of nuclear reactions, nuclear power station, Nuclear		
	waste disposal, Site selection of nuclear power plants.		
	Hydro electric station:	10	
	Hydrology, Principles of working, applications, site selection,		
	classification and arrangements, hydro-electric plants, run off size of		
	plant and choice of units, operation and maintenance, hydro systems,		
	interconnected systems.		
	Non Conventional Power Plants: Introduction to non-conventional		
	power plants (Solar, wind, geothermal, tidal)etc.		
	Electrical system:		
5	Generators and their cooling, transformers and their		
	cooling.Instrumentation Purpose, classification, selection and	06	
	application, recorders and their use, listing of various control		
	rooms.Pollution due to power generation and its remedy		

- 1. Power Plant Engineering, P.K. Nag, McGraw Hill.
- 2. Power Plant Engineering, F.T. Morse, Affiliated East-West Press Pvt. Ltd.
- 3. Power Plant Technology El-Vakil, McGraw Hill.

Reference books

- 1. Steam & Gas Turbines & Power Plant Engineering by R.Yadav, Central Pub.House.
- 2. An introduction to thermal power plant engineering and operation, P.K.Das and A.K. Das, Notion press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain the principle of operation of Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 2. Describe the methods of maintenance of Steam, Gas and Hydroelectric power plants
- 3. Identify the cause of pollution for power generation and its remedy.
- 4. Suggest location to set up Steam, Hydroelectric, Diesel, Gas turbine and Nuclear power plant.
- 5. Compare Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 6. Solve numerical problems of load estimation and economics of power plants.

				C	ompute	r Organ	ization					
	PO'S											
CO'S	DO 1	DOO	DO2	DO 4	DOF	DOC	D07	DOQ	DOO	DO10	DO11	DO10
	POI	P02	P03	P04	P05	P06	P07	P08	P09	P010	POIT	POIZ
CO1	3	3	2	2	2	2	-	-	-	-	2	2
CO2	2	2	-	2	-	2	2	2		1	2	2
CO3	2	2	2	3	1	2	2	2	1	1	2	2
CO4	1	1	-	1	1	2	-	2	1	1	1	2
CO5	2	2	-	2	-	2	2	2		1	1	2
CO6	2	2	2	2	2	2	2	2	1	1	1	2
Avg	2.00	2.00	2.00	2.00	1.50	2.00	2.00	2.00	1.00	1.00	1.50	2.00

Name	e of the course	N CONVENT	IONAL			
C	ENERGY					
Cours	se Code: PE-EE-501C	Semester: 5 th				
Durat	tion: 6 months	Maximum Marks: 10	0			
	ling Scheme	Examination Scheme				
Theor	y: 3 hrs./week	Mid Semester Exam:	15 Marks			
Tutor		Assignment & Quiz: 1	<u>U Marks</u>			
Practi	cal: hrs./week	Attendance:	<u>05 Marks</u>			
Credit	Points: 3	End Semester Exam:	0 Marks			
Objec						
1.	To understand the difference between Renewa	able and non-renewable	energy sources			
2.	To understand methods of conversion of solar	energy and wind energy	y to other form of	of energy.		
3.	Tounderstand methods harnessing energy from	n Biomass, Geothermal	and ocean			
4.	To understand the principle of operation of M	agneto Hydrodynamic p	ower generatior	1:		
5.	To understand the principle and operation of f	fuel cell.				
6.	To solve numerical problems of Renewable and	nd non-renewable energy	y sources			
Pre-R	equisite					
1.	Electric Circuit Theory (PC-EE-301)					
2.	Electromagnetic field theory (PC-EE-303)					
3.	Electric Machine-I (PC-EE-401)					
4.	Electrical and Electronics measurement (PC-I	EE-403)				
Unit	Content		Hrs	Marks		
	Introduction to Energy sources:					
	Renewable and non-renewable energy sources, energy consumption					
1	as a measure of Nation's development; strategy formeeting the 03					
	future energy requirements Global and Nation					
	of renewable energy sources. Impact of renew	able energy generation				
	on environment, Kyoto Protocol.	138				

			r
	Solar Energy:		
2	Solar radiation - beam and diffuse radiation, solar constant, earth sun		
2	angles, attenuation and measurement of solarradiation, local solar		
	time, derived solar angles, sunrise, sunset and day length. flat plate	08	
	collectors, concentratingcollectors, Solar air heaters-types, solar		
	driers, storage of solar energy-thermal storage, solar pond, solar		
	water heaters, solar distillation, solar still, solar cooker, solar heating		
	& cooling of buildings, photo voltaic - solar cells, different typesof		
	PV Cells, Mono-poly Crystalline and amorphous Silicon solar cells.		
	Design of PV array. Efficiency and cost of PV systems & its		
	Wind Energy:		
з	Principle of wind energy conversion: Basic components of wind		
5	anergy conversion systems: wind mill components, various types and	05	
	their constructional features: design considerations of horizontal and	05	
	vertical axis wind machines: analysis of aerodynamic forces acting		
	on wind mill blades and estimation of power output: wind data and		
	site selection considerations		
	Energy from Biomass:		
4	Biomass conversion technologies, Biogas generation plants,		
	classification, advantages and disadvantages, constructional details,	05	
	site selection, digester design consideration, filling a digester for		
	starting, maintaining biogas production, Fuel properties of bio gas,		
	utilization of biogas		
_	Geothermal Energy:		
5	Estimation and nature of geothermal energy, geothermal sources and		
	resources like hydrothermal, geo-pressured hot dryrock, magma.	05	
	Advantages, disadvantages and application of geothermal energy,		
6	prospects of geothermal energy in India.		
6	Energy from Ocean:		
	ocean Therman Electric Conversion (OTEC) systems like open	05	
	Energy from tides basic principle of tidal power single basin and	05	
	double has in tidal power plants, advantages limitation and scope of		
	tidal energy Wave energy and power from wave wave energy		
	conversion devices advantages and disadvantages of wave energy		
7	Magneto Hydrodynamic power generation:	05	
	Principle of MHD power generation, MHD system, Design		
	problems and developments, gas conductivity, materials forMHD		
	generators and future prospects.		
8	Hydrogen Energy:		
	Introduction, Hydrogen Production methods, Hydrogen storage,	03	
	hydrogen transportation, utilization of hydrogen gas, hydrogen as		
	alternative fuel for vehicles.		
9		02	
	Introduction, Design principle and operation of fuel cell, Types of	03	
	rue cens, conversion efficiency of fuel cell, application fuel cells		

1. Renewable energy sources and conversion technology, Bansal Keemann, Meliss, Tata Mc

Department of Electrical Engineering

Graw Hill.

- 2. Energy Technology, O.P. Gupta, Khanna Publishing House.
- 3. Renewable energy resources and emerging technologies, D.P. Kothari, PHI.
- 4. Non-conventional Energy sources, G.D. Rai, Khanna Publishers.
- 5. Non Conventional Energy Resources, Chandra, Khanna Publishing House.

Reference books

1. Non-conventional Energy, Ashok V. Desai, New Age International Publishers Ltd.

Course Outcome:

SL NO.	Statement
PE-EE-501C.1	To describe the fundamentals of Renewable and Non- Conventional energy
PE-EE-501C.2	To explain the conversion of energy from Solar, Wind abs Biomass
PE-EE-501C.3	To illustrate the concept of Geothermal, Magneto Hydrodynamic and energy from Ocean.
PE-EE-501C.4	To distinguish the utilization of Hydrogen Energy and Fuel Cell

	Computer Organization											
CO'S		PO'S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	-	-	-	-	2	2
CO2	2	2	-	2		2	2	2		1	2	2
CO3	2	2	2	3	1	3	2	3	1	1	3	2
CO4	1	1	-	1	1	2	-	1	1	1	1	2
Avg	2.00	2.00	2.00	2.00	1.33	2.50	2.00	2.00	1.00	1.00	2.00	2.00

Department of Electrical Engineering

6th Semester

Semester-VI

Name	of the course						
Cours	e Code: PC-EE-601						
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme					
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutor	al: 0hr/week	Assignment & Quiz: 1	0 Marks				
Credi	Points: 3	Attendance: (05 Marks				
		End Semester Exam: 7	'0 Marks				
011							
Objec	tive:	<u> </u>					
1.	To understand the method of representation o	t power system compo	nents				
2.	To know about loacation and components of a	distribution substation.					
3.	To understand different methods of load flow	v studies.					
4.	To determine faults in Electrical systems.	. 1 .1.					
5.	To understand the principle of power system s	stability.					
<u>6</u> .	To understand the principle of relays and met	hods of protection of pov	ver system				
/. Dra D	To solve numerical problems on the topics stu	laied.					
Pre-K	Electric Circuit Theory (DC EE 201)						
1.	Electric Circuit Theory (PC-EE-501)						
2.	Power system L(PC EE 502)						
J. Unit	Fower system-1 (FC-EE-502)		Ure	Morks			
1	Popresentation of Power system compo	1115	IVIALKS				
1	representation of balanced three phase not						
	lippesentation of balanced three phase her	02					
	diagram and the impedance or reactance dia	agram, per unit (PU)					
	system.						
	Distribution substation: Types of subst	ations, location of	0.5				
2	substations, substation equipments and ac	ccessories, earthling	05				
2	(system & equipment), feeder and distribut	tors, radial and loop					
	systems.						
	Load flow studies: Network model formulation	Load flow studies: Network model formulation formation of Ybus					
		on, formation of Yous,					
	load flow problem, Gauss-Siedel method	d, Newton-Raphson	05				
	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com	d, Newton-Raphson parison of load flow	05				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com methods.	d, Newton-Raphson parison of load flow	05				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com methods.	d, Newton-Raphson parison of load flow	05				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com methods. Faults in Electrical systems: Transient on a tra	d, Newton-Raphson parison of load flow	05				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com methods. Faults in Electrical systems: Transient on a tra- circuit of a synchronous machine under no lo	d, Newton-Raphson parison of load flow ansmission line, short bad & loaded condition.	05				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com methods. Faults in Electrical systems: Transient on a tra- circuit of a synchronous machine under no lo Symmetrical component transformation, sequ	ansmission line, short bad & loaded condition.	05 08				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com methods. Faults in Electrical systems: Transient on a tra- circuit of a synchronous machine under no lo Symmetrical component transformation, sequ sequence network of power system, sy	ansmission line, short anscience impedance and nchronous machine, shore,	05				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com methods. Faults in Electrical systems: Transient on a tra- circuit of a synchronous machine under no lo Symmetrical component transformation, sequ sequence network of power system, sy- transmission lines and transformers. Sym	ansmission line, short vad & loaded condition. uence impedance and nchronous machine, metrical component	05				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com methods. Faults in Electrical systems: Transient on a tra- circuit of a synchronous machine under no lo Symmetrical component transformation, sequ sequence network of power system, sy- transmission lines and transformers. Sym analysis of unsymmetrical faults single line-t	d, Newton-Raphson parison of load flow ansmission line, short bad & loaded condition. hence impedance and nchronous machine, metrical component	05				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com- methods. Faults in Electrical systems: Transient on a tra- circuit of a synchronous machine under no lo Symmetrical component transformation, sequise sequence network of power system, sy- transmission lines and transformers. Sym- analysis of unsymmetrical faults, single line-to- line fault double line-to- ground fault	d, Newton-Raphson parison of load flow ansmission line, short bad & loaded condition. hence impedance and nchronous machine, metrical component to -ground fault, lineto-	05 08				
3	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com- methods. Faults in Electrical systems: Transient on a tra- circuit of a synchronous machine under no lo Symmetrical component transformation, sequ sequence network of power system, sy- transmission lines and transformers. Sym analysis of unsymmetrical faults, single line-to- line fault, double line-to- ground fault Power system stability: Steady state stability	ansmission line, short ansmission line, short ad & loaded condition. hence impedance and nchronous machine, metrical component to -ground fault, lineto-	05 08				
3 4 5	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com- methods. Faults in Electrical systems: Transient on a tra- circuit of a synchronous machine under no lo Symmetrical component transformation, sequ sequence network of power system, sy- transmission lines and transformers. Sym analysis of unsymmetrical faults, single line-to- line fault, double line-to- ground fault Power system stability: Steady state stability equal area criteria swing equation multimeter	d, Newton-Raphson parison of load flow ansmission line, short oad & loaded condition. hence impedance and nchronous machine, metrical component to -ground fault, lineto-	05 08 08				
3 4 5	load flow problem, Gauss-Siedel method method, Decoupled load flow studies, com- methods. Faults in Electrical systems: Transient on a tra- circuit of a synchronous machine under no lo Symmetrical component transformation, sequ sequence network of power system, sy- transmission lines and transformers. Sym analysis of unsymmetrical faults, single line-t- line fault, double line-to- ground fault Power system stability: Steady state stabiliti equal area criteria, swing equation, multi mac	d, Newton-Raphson parison of load flow ansmission line, short bad & loaded condition. hence impedance and nchronous machine, metrical component to -ground fault, lineto- y, transient stability, chine stability concept	05 08 04				

6	Power system protection: Protective zones, Relaying elements and	12	
	quantities. Protective relays, basic requirements and type of		
	protection, phase and amplitude comparator, grading (time &		
	current), classification of Electromagnetic relays, Directional relay,		
	Distant relay, Differential relay, basic aspects of static and digital		
	relays, relay protection scheme for transformer, feeder, generators		
	and motors.		
	Circuit breakers, circuit breaking transients, transient recovery		
	voltage, current chopping and resistance switching, circuit breaker		
	rating, arc and arc extinction, circuit breaker types, oil circuit		
	breaker, vacuum circuit breaker, air blast circuit breaker, SF6 circuit		
	breaker and operating mechanism, advantages and disadvantages		
	of different types		

- 1. Modern Power System Analysis, D.P. Kothari & I.J. Nagrath, 4th Edition, Tata McGraw Hill.
- 2. Electrical Power Systems, Subir Ray, PHI
- 3. Switchgear protection and power systems, Sunil S Rao, Khanna Publications.
- 4. A text book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S. Bhatnagar & A. Chakrabarti, Dhanpat Rai & CO.

Reference Books:

- 1. Protection & Switchgear, B. Bhalja, R.P. Maheshwari, N.G.Chothani, Oxford.
- 2. Power system protection & switchgear, B.Ram & D.N. Vishwakarma, Tata McGraw Hill.
- 3. Handbook of Electrical Power Distribution, G. Ramamurthy, University Press
- 4. Electric Power Transmission and Distribution, S. Sivanagaraju, S.Satyanarayana, Pearson Education.
- 5. Power Systems Stability, Vol. I,II & II, E.W. Kimbark, Wiley.
- 6. Power Engineering, D.P Kothari & I.J. Nagrath, Tata McGraw Hill.
- 7. Power Systems Analysis, A. R. Bergen & V. Vittal, Pearson Education. 8. Computer Aided Power systems analysis, Dr. G. Kusic, CEC press.

Course Outcome:

After completion of this course, the learners will be able to

Course outcome codes	Statement
PC-EE-601.1	To explain the operation of various power system components
PC-EE-601.2	To determine the line flows using G-S, N-R and F-D method
PC-EE-601.3	To analyse the stability & types of faults along with their effects
PC-EE-601.4	To evaluate the fault current in case of L-G, L-L and L-L-G faults

Department of Electrical Engineering

	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
PC-EE- 601.1	3	3	2	1	1	1	1	-	-	1	-	2	3	2
PC-EE- 601.2	3	3	2	2	1	2	2	-	-	1	1	2	2	3
PC-EE- 601.3	3	3	3	3	2	2	2	-	3	2	2	3	3	3
PC-EE- 601.4	3	3	3	2	3	3	3	-	2	-	3	3	3	3
Avera ge	3	3	2	2	2	2	2	-	1	1	1	2	3	3

Name	of the course	MICROPROCESSOF	R & MICRO			
Cours	urse Code: PC-EE-602 Semester: 6th					
Durat	ion: 6 months	Maximum Marks: 100)			
Teach	ing Scheme	Examination Scheme				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutori	al: 0hr/week	Assignment & Quiz: 1	0 Marks			
Credit	Points: 3	Attendance:	05 Marks			
		End Semester Exam: 7	70 Marks			
Objec	tive:					
1.	To understand the architecture of 8086 microprocessor.					
2.	To understand the design aspects of I/O and N	Memory Interfacing circ	uits.			
3.	To interface microprocessors with supporting	chips.				
4.	To understand the architecture of 8051 micro	controller.				
5.	To design a microcontroller based system					
Pre-R	equisite					
1.	Analog Electronics (PC-PC-EE-303)					
2.	Digital Electronics (PC-EE-402)		1	1		
Unit	Content		Hrs	Marks		
1	The 8086 Microprocessor: Introduction to 80	086- Microprocessor				
	architecture - Addressing modes - Instruction	on set and assembler				
	directives - Assembly language progra	08				
	Programming - Linking and Relocation - S					
	Macros - Interrupts and interrupt service rout	ines - Byte and String				
	Manipulation.					

2	8086 System bus structure: 8086 signals - Basic configurations - System bus timing -System design using 8086 - I/O programming - Introduction to Multiprogramming - System Bus Structure - Multiprocessor configurations - Coprocessor, Closely coupled and loosely Coupled configurations - Introduction to advanced	08
3	I/O INTERFACING: Memory Interfacing and I/O interfacing - Parallel communication interface - Serial communication interface - D/A and A/D Interface - Timer - Keyboard /display controller - Interrupt controller -DMA controller - Programming and applications Case studies: Traffic Light control, LED display , LCD display, Keyboard display interface and Alarm Controller.	08
4	Microcontroller: Architecture of 8051 - Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.	08
5	Interfacing Microcontroller: Programming 8051 Timers - Serial Port Programming - Interrupts Programming - LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation - Comparison	06
	of Microprocessor, Microcontroller, PIC and ARM processors	

- 1. Advanced Microprocessors and Peripheral, Koshor M Bhurchandi, Ajay Kumar Ray, 3rd Edition, MC Graw hill education.
- 2. Microprocessor & Interfacing, D.V. Hall, Mc Graw Hill.
- 3. The 8051 microcontroller, Ayala, Thomson.

Ref erence books:

- 1. Advanced Microprocessors, Y. Rajasree, New Age international Publishers.
- 2. An introduction to the Intel family of Microprocessors, James L. Antonakos, Pearson Education,
- 3. The 8051 Microcontroller and Embedded systems, Muhammad Ali Mazidi & J. G. Mazidi, Pearson Education.
- 4. The 8086 Microprocessors: Programming & Interfacing the PC, K.J.Ayala, Thomson.
- 5. Microprocessor & Peripherals, S.P. Chowdhury & S. Chowdhury, Scitech.
- 6. Microchip technology data sheet, www.microchip.comerence books

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain the architecture of 8086 and 8051 and develop micro- processor/ microcontroller based systems.
- 2. Illustrate the assembly language programming of 8086, 8051
- 3. Explain the interface different peripheral with 8086 and 8051
- 4. Analyze microprocessor, microcontroller, PIC and ARM processors

Course Outcome:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
				-					_			
C01	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name	of the course	DIGITAL CONTROL	SYSTEM							
Cours	e Code: PE-EE-601A	Semester: 6th								
Durat	ion: 6 months	Maximum Marks: 100								
Teach	ing Scheme	Examination Scheme								
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks							
Tutori	al: 0hr/week	Assignment & Quiz: 1	0 Marks							
Credit	t Points: 3	Attendance:	05 Marks							
		End Semester Exam: 7	0 Marks							
Objec	Objective:									
1.	. To understand the principle of sampling and reconstruction of signals.									
2.	2. To find Z-tranaform and inverse Z-transform of systems.									
3.	To carry out the analysis and design of digital control systems									
4.	To design compensators for digital control system to achieve desired specifications.									
5.	To represent digital control systems using state	e space models.								
6.	To analyze the effect sampling on stability, controllability and observability.									
7.	7. To design digital controllers for industrial applications.									
8.	To solve numerical problems on the topics stud	died.								
Pre-R	equisite									
1.	Control system (PC-EE-503)			r						
Unit	Content		Hrs	Marks						
1	Sampling and reconstruction: Introduction,	Examples of Data								
	control systems - Digital to Analog conversion	n and Analog to Digital	03							
	conversion, sample and hold operations.									
	Z-transform: Introduction, Linear difference	ce equations, pulse								
	response 7 - transforms Theorems of	7 - Transforms	05							
2	the inverse 7 transforms Modified 7 Transf	Eorma	00							
	Z Plane analyzis of discrete time control sy	otam: 7 Transform								
	2- I faile analysis of discrete-time collulor sy		05							
	method for solving difference equations; Puls	se transforms function,	05							
3	block diagram analysis of sampled - data	systems, mapping								
5	between s-plane and z-plane.									

	State space analysis: State Space Representation of discrete time	
4	systems, Pulse Transfer Function Matrix solving discrete time	
	state space equations, State transition matrix and it's Properties,	96
	Methods for Computation of State	06
	Transition Matrix, Discretization of continuous time state - space	
	equations.	
	Controllability and observability: Concepts of Controllability and	
_	Observability, Tests for controllability and Observability. Duality	04
5	between Controllability and Observability, Controllability and	
	Observability conditions for Pulse Transfer Function	
6	Stabilty analysis: Mapping between the S-Plane and the Z-Plane -	05
	Primary strips and Complementary Strips - Constant	
	frequency loci, Constant damping ratio loci, Stability Analysis of	
	closed loop systems in the Z-Plane. Jury	
	stablility test - Stability Analysis by use of the Bilinear	
	Transformation and Routh Stability criterion.	
7.	Design of discrete time control system by conventional methods:	
	Transient and steady - State response Analysis - Design based on	06
	the frequency response method -	06
	Bilinear Transformation and Design procedure in the w-plane, Lead,	
	Lag and Lead-Lag compensators	
	and digital PID controllers.	
8.	State feedback controllers and observers: Design of state feedback	
	controller through pole placement - Necessary and sufficient	05
	conditions, Ackerman's formula.	
	State Observers - Full order and Reduced order observers.	

- 1. Digital Control and State Variable Methods, M. Gopal, TMH Publishers
- 2. Discrete-time Control Systems, K. Ogata, Pearson Education,
- 3. Digital Control Systems, B.C. Kuo, Wiley Publications.
- 4. Control System Engineering, I.J. Nagrath, M. Gopal, New age International.

Reference books

- 1. Digital control of dynamic systems, Gene F. Franklin, J. David Powell, and Michael Workman 3rd ed, 1998, Addison-Wesley.
- 2. Digital Control Systems, design, identification and implementation, Landau, Ioan Doré, Zito, Gianluca, Springer-Verlag London.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain the principle of sampling and reconstrction of analog signal.
- 2. Solve Z-transformation and inverse Z-transformation of systems.
- 3. Analyze the effect sampling on stability, controllability and observability.
- 4. Design compensators for digital control system to achieve desired specifications.
- 5. Compose digital control systems using state space models.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
	-			_				-	_			
C01	3	3	1	2	-	-	1	3	2	-	1	2
CO2	3	3	1	2	-	1	-	3	1	1	1	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
C04	3	3	1	-	1	1	-	3	2	2	-	1
C05	3	3	1	-	1	1	-	3	2	2	-	1
Avg.	3	3	1	1	1	1	1	3	2	1.5	1	2

Name	of the course	HVDC TRANSMISSI	ON	
Cours	e Code: PE-EE-601B	Semester: 6th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: hrs/week	05 Marks		
Credit	t Points: 3	0 Marks		
Objec	tive:			
1.	To understand the basics of DC power transmi			
2.	To analyse HVDC converters.			
3.	To understand methods of control of HVDC s	system		
4.	To understand causes of fault and protection a	gainst fault of converter	s.	
5.	To understand function of smooting reactor an	nd transient over voltage	of DC line	
6.	To understand methods of reactive power con	ntrol.		
7.	To solve numerical problems on the topics stu	idied.		
Pre-R	equisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Power system-1 (PC-EE-502)			
3.	Control system (PC-EE-503)			
4.	Power Electronics (PC-EE-504)			
Unit	Content		Hrs	Marks
1	DC power transmission technology: Introduc	ction, Comparison of		
	HVAC and HVDC transmission system,	Applications of DC		
	transmission, Description of DC tr	ansmission system,	04	
	Configurations, Modern trends in DC transmis	ssion.		
	Analysis of HVDC converters: Pulse number	. Choice of converter		
	configuration Simplified analysis of Graetz ci	ircuit Converter bridge	06	
2	characteristics. Characteristics of a twelve-nu			
	enalusis of convertors with and without over			
	analysis of converters with and without overla			
	Converter and HVDC system control: General	06		
	control, Converter control characteristics, Sys	stem control hierarchy,	00	
	Converter faults and protection: Converte	er faults, Protection		
4	against over-currents, Overvoltages in a con	verter station, Surge	05	
	arresters, Protection against over-voltages. 1	.47		

5	Smoothing reactor and DC line: Introduction, Smoothing reactors, DC line, Transient over voltages in DC line, Protection of DC line, DC breakers, Monopolar operation, Effects of proximity of AC and DC transmission lines.	06	
6	Reactive power control: Reactive power requirements in steady state, Sources of reactive power, Static VAR systems, Reactive power control during transients, Harmonics and filters, Generation of harmonics, Design of AC filters and DC filters.	06	
7.	Component models for the analysis of ac/dc systems: General, Converter model, Converter control, Modelling of DC network, Modelling of AC networks. Power flow analysis in AC/DC systems: General, Modelling of DC links, Solution of DC load flow, Discussion, Per unit system for DC quantities.	06	

Text book:

1. HVDC Power transmission systems , K.R. Padiyar , Third Edition, New Age International Publishers

Reference books

- 1. Power Transmission by Direct Current, Erich Uhlmann, Fourth Indian Reprint, Springer International Edition, 2012.
- 2. HVDC Transmission, S Kamakshaiah, V Kamaraju , 2nd Edition, Mcgraw Hill Education, 2020.
- 3. Direct Current Transmission, E.W.Kimbark, Wiley-Blackwell; Volume 1 edition (1 January 1971)
- H.V.D.C Transmission , J Arrillaga , 1st Edition, The Institution of Engineering and Technology, 1998

Course Outcome:

After completion of this course, the learners will be able to

- 1. Define intelligently AC and DC transmission systems for the dedicated application(s).
- 2. Choose the suitable two-level/multilevel configuration for high power converters.
- 3. Analyze the protection methods for various converter faults.
- 4. Select suitable reactive power compensation method.
- 5. Point out the configuration for harmonic mitigation on both AC and DC sides.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	2
CO2	3	3	1	2	-	1	-	3	1	1	1	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	3	1	-	1	1	-	3	2	2	-	1

JIS GROUP

CO5	3	3	1	-	1	1	-	3	2	2	-	1
Avg.	3	3	1	1	1	1	1	3	2	1.5	1	2

Name	e of the course	ELECTRICAL MACHINE DESIGN						
Cours	se Code: PE-EE-601C	Semester: 6th						
Durat	tion: 6 months	Maximum Marks: 100						
Teach	ning Scheme	Examination Scheme						
Theor	ry: 3 hrs/week	Mid Semester Exam: 15 Marks						
Tutor	ial: 0 hr/week	Assignment & Quiz: 10 Marks						
Credi	t Points: 3	Attendance: 05 Marks						
		End Semester Exam: 7	0 Marks					
Objec	ctive:							
1.	To understand the baisc principle of design of	Electric machines.	1.0.1					
2.	To understand basics of design of Transforme	er, Induction machine and	d Synchronous 1	nachines.				
3.	To understand different factors that influence	design of Electric machi	nes.					
4.	To undertand the need and use software tools	for design of Electric m	achines					
<u>)</u> .	10 solve numerical problems on the topics stu	Idied						
Pre-R	Electric Machine I (DC EE 401)							
1.	Electric Machine II (PC-EE-401)							
Z.	Contont		LL ro	Morka				
1	Introduction: Major considerations in Flact	rical Machina Dasign	піз	IVIALKS				
1	Electrical Engineering Materials - Space foot	fical Machine Design -						
	Electrical Engineering Materials - Space fact	tor - Choice of Specific	04					
	Electrical and Magnetic loadings - Thermal	considerations - Heat	01					
	flow - Temperature rise and Insulating M	laterials - Rating of						
	machines - Standard specifications.							
	Transformer: Output Equations - Main Dime	nsions - kVA output for						
	single and three phase transformers - Wi	ndow space factor -	10					
2	Design of core and winding - Overall dim	ensions - Operating						
2	characteristics - No load current - Ter	nperature rise in						
	Transformers - Design of Tank - Method	ods of cooling of						
	Transformers.	C						
	Induction motors: Output equation of Ind	luction motor - Main						
3	dimensions - Choice of Average flux density	v - Length of air gap-	10					
	Rules for selecting rotor slots of squirrel cag	e machines - Design of						
	rotor hars & slots - Design of end rings - De	sign of wound rotor -						
	Magnetic lookage calculations - Lookage re	actance of polyphase						
	magnetic leakage calculations - Leakage le	it current. Onenoting						
	machines- Magnetizing current - Short circu	n current - Operating						
	characteristics- Losses and Efficiency.	1						
	Synchronous machines: Output equations - o	choice of Electrical and	10					
4	Magnetic Loading - Design of salient pole ma	achines - Short circuit	10					
4	ratio - shape of pole face - Armature	design - Armature						
	parameters - Estimation of air gap length - De	esign of rotor -Design						
	of damper winding - Determination of full los	ad field mmf - Design						
	of field winding - Design of turbo alternators	- Rotor design.						
	Computer aided Design (CAD): Limitatio	ons (assumptions) of						
	traditional designs, need for CAD analysis,	synthesis and hybrid	05					

methods, design optimization methods, variables, constraints and	
objective function, problem formulation.	

- 1. A Course in Electrical Machine Design, A.K. Sawhney, Dhanpat rai and sons.
- 2. Electrical machine design, V. rajini, V.S. Nagarajan, Pearson India education services Pvt. Ltd.
- 3. Computer Aided Design of Electrical Machine, K. M. V. Murthy, B.S. Publications.

Reference books

- 1. Design and Testing of Electrical Machines, M.V.Deshpande, PHI
- 2. Principles of Electrical Machine Design, 3rd Edition, S.K. sen, Oxf-Ibh
- 3. Computer Aided Design of Electrical Equipment, M. Ramamoorthy, East-West Press.

Course Outcome:

Course outcome codes	Statement
PE-EE-601C.1	Describe basic specifications of Machine Design
PE-EE-601C.2	Explain the complete design of a transformer
PE-EE-601C.3	Assess the overall dimensions of an Induction Motor
PE-EE-601C.4	Design stator and rotor part of a Synchronous Machine

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name of the course	ELECTRICAL AND HYBRID VEHICLE
Course Code: PE-EE-602A	Semester: 6th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks
Tutorial: 0 hr/week	Assignment & Quiz: 10 Marks
Credit Points: 3	Attendance: 05 Marks
	50

	End Semester Exam: 7	0 Marks								
Objec	tive:									
1.	To understand the basic difference between conventional and Hybrid	vehicles.								
2.	To understand different configuration and control of Electric drives.									
3.	To understand energy storage system in Hybrid vehicles.									
4.	. To understand different energy management strategies of Hybrid vehicles.									
5.	To solve numerical problems on the topics studied									
Pre-R	equisite									
1.	Electric Machine-I (PC-EE-401)									
2.	Electric Machine-II (PC-EE-501)	1	1							
Unit	Content	Hrs	Marks							
	Introduction: Conventional Vehicles: Basics of vehicle performance,									
	vehicle power source characterization, transmission characteristics,									
1	mathematical models to describe vehicle performance.									
	Introduction to Hybrid Electric Vehicles: History of hybrid and									
	electric vehicles social and environmental importance of hybrid	09								
	and electric vehicles impact of modern drive-trains on energy									
	supplies									
	Supplies. Urbrid Electric Drive trainer Desig concent of hybrid traction									
	Hydrid Electric Drive-trains. Basic concept of hydrid traction,									
	introduction to various hybrid drive-train topologies, power flow									
	control in hybrid drive-train topologies, fuel efficiency analysis.									
	Electric Trains: Electric Drive-trains: Basic concept of electric									
	traction, introduction to various electric drivetrain topologies,									
	power flow control in electric drive-train topologies, fuel efficiency	10								
2	analysis.	10								
	Electric Propulsion unit: Introduction to electric components used									
	in hybrid and electric vehicles. Configuration and control of DC									
	Motor drives Configuration and control of Induction Motor drives									
	configuration and control of Permanent Magnet Motor drives									
	Configuration and control of Switch Paluctance Motor drives, drive									
	configuration and control of Switch Relactance Wotor drives, drive									
	System enciency.									
	Energy Storage. Energy Storage. Infoduction to Energy Storage									
	Requirements in Hydrid and Electric Venicles, Battery based energy	09								
3	storage and its analysis, Fuel Cell based energy storage and its	0)								
5	analysis, Super Capacitor based energy storage and its analysis,									
	Flywheel based energy storage and its analysis, Hybridization of									
	different energy storage devices. Sizing the drive system: Matching									

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

	the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting		
	the energy storage technology, Communications, supporting		
	subsystems		
	Energy Management Strategies: Energy Management Strategies:		
	Introduction to energy management strategies used in hybrid and	0.6	
4	electric vehicles, classification of different energy management	06	
	strategies, comparison of different energy management strategies,		
	implementation issues of energy management strategies.		
	Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a		
5	Battery Electric Vehicle (BEV).	05	

Text book:

- 1. Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Hussein, CRC Press.
- 2. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, C. Mi, M. A. Masrur and D. W. Gao, John Wiley & Sons.
- 3. Electric and Hybrid Vehicles: Khanna Publishing House.
- 4. Hybrid Electric Vehicles: Energy Management Strategies, Onori Simona, Serrao Lorenzo and Rizzoni Giorgio, Springer.
- 5. Electric and Hybrid Vehicles, T. Denton, Routledge.

Reference books

- 1. Electric Vehicle Technology Explained, James Larminie, John Lowry, Wiley.
- 2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi CRC Press, 2004.

Course Outcome:

Course outcome codes	Statement
PE-EE-602A.1	To state the basic difference between conventional and Hybrid vehicles.
PE-EE-602A.2	To compare different configuration and control of Electric drives.
PE-EE-602A.3	To calculate the capacity of the energy storage system in Hybrid vehicles.
PE-EE-602A.4	To explain different energy management strategies of Hybrid vehicles.

PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
					152						

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

Department of Electrical Engineering

CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name	of the course	POWER QUALITY AND FACTS						
Cours	e Code: PE-EE-602B	Semester: 6th						
Durat	ion: 6 months	Maximum Marks: 100						
Teach	ing Scheme	Examination Scheme						
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks					
Tutor	ial: 0 hr/week	Assignment & Quiz: 1	0 Marks					
Credi	t Points: 3	Attendance: (05 Marks					
		End Semester Exam: 7	'0 Marks					
Objec	tive:							
1.	To understand the characteristics of ac transm	ission and the effect of s	hunt and series	reactive				
	compensation.							
2.	To understand the working principles of FAC	TS devices and their ope	rating character	istics.				
3.	To understand the basic concepts of power qu	ality.						
4.	To understand the working principles of device	ces to improve power qua	ality.					
5.	To solve numerical problems on the topics stu	ıdied						
Pre-R	equisite							
1.	Power system-I (PC-EE-502)							
2.	Control system (PC-EE-503)							
3.	Power Electronics (PC-EE-504)		1					
Unit	Content		Hrs	Marks				
	Transmission Lines and Series/Shunt	Reactive Power						
	Compensation: Basics of AC Transn	nission. Analysis of						
	uncompensated AC transmission lines. Pa	ssive Reactive Power	04					
	Compensation. Shunt and series compensation	on at the mid-point of						
1	an AC line. Comparison of Series and Shunt C	Compensation.						
	Thyristor-based Flexible AC Transmission	Controllers (FACTS):						
	Description and Characteristics of Thyristor-	based FACTS devices:						
	Static VAR Compensator (SVC) Thyristor	tor Controlled Series						
2	Consister (TCSC). Thurster Controlled Prol	Istor Controlled Series						
	Capacitor (TCSC), Thynstor Controlled Brak	ang Resistor and Single						
	Pole Single Inrow (SPSI) Switch. Col	inigurations/Modes of						
	Operation, Harmonics and control of SVC ar	nd TCSC. Fault Current						
	Limiter.							

3	Voltage Source Converter based (FACTS) controllers: Voltage Source Converters (VSC): Six Pulse VSC, Multi-pulse and Multi-level Converters, Pulse-Width Modulation for VSCs. Selective Harmonic Elimination, Sinusoidal PWM and Space Vector Modulation. STATCOM: Principle of Operation, Reactive Power Control: Type I and Type II controllers, Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC): Principle of Operation and Control. Working principle of Interphase Power Flow Controller. Other Devices: GTO Controlled Series Compensator. Fault Current Limiter.	08
4	Application of FACTS : Application of FACTS devices for power-flow control and stability improvement. Simulation example of power swing damping in a single-machine infinite bus system using a TCSC. Simulation example of voltage regulation of transmission mid-point voltage using a STATCOM.	04
5	Power Quality Problems in Distribution Systems : Power Quality problems in distribution systems: Transient and Steady state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Wave-form Distortions: harmonics, noise, notching, dc-offsets, fluctuations. Flicker and its measurement. Tolerance of Equipment: CBEMA curve.	04
6.	DSTATCOM: Reactive Power Compensation, Harmonics and Unbalance mitigation in Distribution Systems using DSTATCOM and Shunt Active Filters. Synchronous Reference Frame Extraction of Reference Currents. Current Control Techniques for DSTATCOM.	06
7.	Dynamic Voltage Restorer and Unified Power Quality Conditioner: Voltage Sag/Swell mitigation: Dynamic Voltage Restorer - Working Principle and Control Strategies. Series Active Filtering. Unified Power Quality Conditioner (UPQC): Working Principle. Capabilities and Control Strategies.	06

1. FACTS Controllers in Power Transmission and Distribution, N K. R. Padiyar, New Age International (P) Ltd. 2007.

Reference books

- 1. Understanding FACTS: Concepts and Technology of FACTS Systems, N. G. Hingorani and L. Gyugyi Wiley-IEEE Press, 1999.
- 2. Reactive Power Control in Electric Systems, T. J. E. Miller, John Wiley and Sons, New York, 1983.
- 3. Electrical Power Systems Quality", R. C. Dugan, McGraw Hill Education, 2012.
- 4. Electric Power Quality, G. T. Heydt, Stars in a Circle Publications, 1991

Course Outcome:

After completion of this course, the learners will be able to

- 1. State the working principle of dynamic voltage restorer and UPQC
- 2. Analyse uncompensated AC transmission line.
- 3. Explain the working principles of FACTS devices, DSTATCOM and their operating characteristics.
- 4. Point out the different issues of power qualit \$54 distribution system.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	1	2	-	-	1	3	2	-	1	3
<u> </u>	3	3	1	2		1		3	1	1	2	3
02	5	5	1	4		1	_	5	1	I	4	5
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

•								
Name	of the course	INDUSTRIAL ELECTRICAL SYSTEMS						
Cours	e Code: PE-EE-602C	Semester: 6th						
Durat	ion: 6 months	Maximum Marks: 100						
Teach	ing Scheme	Examination Scheme						
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks					
Tutori	al: 0 hr/week	Assignment & Quiz: 1	0 Marks					
Credit	Points: 3	Attendance:	05 Marks					
		End Semester Exam: 7	'0 Marks					
Objec	tive:							
1.	To understand the electrical wiring systems w	vith standard symbols , d	rawings and SL	D for				
	residential, commercial and industrial consum	ers						
2.	To understand various components of industri	al electrical systems						
3.	To analyze and selec the proper size of various electrical system components							
4.	To understand methods of automation of Industrial Electrical Systems							
5. To solve numerical problems on the topics studied								
Pre-Requisite								
1.	1. Power system-I (PC-EE-502)							
2.	Control system (PC-EE-503)							
3.	Power Electronics (PC-EE-504)			r				
Unit	Content		Hrs	Marks				
	Electrical System Components: LT system	wiring components,						
	selection of cables, wires, switches, distrib	oution box, metering	0.6					
	system, Tariff structure, protection component	ts-Fuse, MCB, MCCB,	06					
	ELCB, inverse current characteristics, symbol	ls, single line diagram						
1	(SLD) of a wiring system. Contactor, Isolator,	Relays, MPCB, Electric						
	shock and Electrical safety practices	,						
	Residential and Commercial Electrical System	ns . Types of residential						
	and commercial wiring systems, general rul	es and guidelines for						
	installation load calculation and sizing of	wire reting of main						
2	installation, load calculation and sizing of	wite, fatting of main	08					
	switch, distribution board and protection dev	ices, eartning system						
	calculations, requirements of commercial i	nstallation, deciding						
	lighting scheme and number of lamps, ear	thing of commercial						
	installation, selection and sizing of componen	ts.						

3	Illumination Systems : Understanding various terms regarding light, lumen, intensity, candle power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation,	06	
	for a residential and commercial premises, flood lighting.		
	Industrial Electrical Systems I: HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting		
4	of motors, SLD, Cable and Switchgear selection, Lightning Protection, Farthing design, Power factor correction, kVAP	06	
	calculations, type of compensation, Introduction to PCC, MCC		
	panels. Specifications of LT Breakers, MCB and other LT panel		
	components.		
	Industrial Electrical Systems II: DG Systems, UPS System, Electrical		
5	Systems for the elevators, Battery banks, Sizing the DG, UPS and	06	
	Battery Banks, Selection of UPS and Battery Banks.		
6.	Industrial Electrical System Automation: Study of basic PLC, Role of		
	in automation, advantages of process automation, PLC based		
	control system design, Panel Metering and Introduction to SCADA	06	
	system for distribution automation.		

- 1. Electrical Wiring, Estimating & Costing, S. L. Uppal and G. C. Garg, Khanna publishers, 2008.
- 2. Electrical Design, Estimating & Costing, K. B. Raina, New age International, 2007.

Reference books:

- 1. Electrical estimating and costing, S. Singh and R. D. Singh, Dhanpat Rai and Co., 1997.
- 2. Web site for IS Standards.
- 3. Residential Commercial and Industrial Systems, H. Joshi, McGraw Hill Education, 2008.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Describe electrical wiring system for residential, commercial and industrial consumers & automation of Industrial Electrical Systems.
- 2. Select transformer, switchgear, protection equipments for industrial electrical systems.
- 3. Classify the rating of components of residential and commercial electrical systems.
- 4. Illustrate lighting scheme for a residential and commercial premises.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex

Department of Electrical Engineering

JIS GROUP

CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name	of the course	DIGITAL SIGNAL PROCESSING					
Cours	e Code: OE-EE-601A	Semester: 6th					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme					
Theor	y: 3 hrs/week	Mid Semester Exam: 15 Marks					
Tutori	al: 0 hr/week	Assignment & Quiz: 10 Marks					
Credit	Points: 3	Attendance: (05 Marks				
		0 Marks					
Ohim	diana.						
	tive:	Calanal					
1.	To understand sampling and reconstruction of To understand the method of 7 transform and i	signal	signal and its m	onantias			
<u>2</u> . 3	To understand Discrete Fourier Transform	Inverse Z- transform of	signal and its pi	operties			
<u> </u>	To understand methods of design of Digital fi	Itors					
1 . 5	To understand applications of Digital signal pro	ncessing					
6.	To solve numerical problems on the topics stud	died					
Pre-R	equisite						
1.	Electric circuit theory (PC-EE-301)						
2.	2. Control system (PC-EE-503)						
Unit	Content		Hrs	Marks			
	Discrete-time signals and systems: Discrete time signals and						
	systems: Sequences: representation of signals on orthogonal						
	basis: Representation of discrete system	06					
	equations Sampling and reconstruction of	signals - aliasing					
1	Sampling theorem and Nyquist rate	signais anasing,					
	Z transform: z Transform Region of conv	varganca Analysis					
	of Linear Shift Inverient systems using z to	ronsform Proportion	06				
	of Linear Shift Invariant systems using 2-th	ransform, Properties	00				
2	of z-transform for causal signals, interpreta	ation of stability in					
	z-domain, Inverse z- transforms.						
	Discrete Fourier Transform : Frequency I	Domain Analysis,					
	Discrete Fourier Transform (DFT), Pi	roperties of DFT,	08				
3	Convolution of signals, Fast Fourier Tra	ansform Algorithm,	08				
3	Parseval's Identity, Implementation of Disc	crete Time Systems.					
	Design of Digital filters: Design of Fl	IR Digital filters:					
	Window method, Park-McClellan's method. Design of IIR						
4	Digital Filters: Butterworth, Chebysh	nev and Elliptic					
4	Approximations; Low-pass, Band-pass, E	Bandstop and High-	10				
	pass filters. Effect of finite register length	12					
	Parametric and non-parametric spectral estimation.						
	Introduction to multi-rate signal processing	л . .					
	Applications of Digital Signal Processing Correlation						

5	Functions and Power Spectra, Stationary Processes, Optimal		
	filtering using ARMA Model, Linear Mean-Square Estimation,	06	
	Wiener Filter.		

- 1. Digital Signal Processing-A computer based approach, S. Mitra, TMH
- 2. Digital Signal Processing: Principles, Algorithms & Application, J.C. Proakis & M.G. Manslakis, PHI
- 3. Fundamental of Digital Signal Processing using MATLAB, Robert J. Schilling, S.L. Harris, Cengage Learning.

Reference books

- 1. Digital Signal Processing-implementation using DSP microprocessors with examples from TMS320C54XX, Avtar Singh & S. Srinivasan, Cengage Learning
- 2. Digital Signal Processing, Chen, OUP
- 3. Digital Signal Processing, Johnson, PHI
- 4. Digital Signal Processing using MATLAB, Ingle, Vikas.
- 5. Digital Signal Processing, Ifeachor, Pearson Education.
- 6. Digital Signal Processing, A.V. Oppenhein & R.W. Shaffer, PHI
- 7. Theory and application of Digital Signal Processing, L.R. Rabiner & B. Gold, PHI
- 8. Digital Signal Processing, Ashok Ambarder, Cengage Learning.
- 9. Digital Signal Processing, S. Salivahanan, A. Vallavaris & C. Gnanpruja, TMH.
- 10. Xilinx FPGA user manual and application notes.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Represent signals mathematically in continuous and discrete-time and in the frequency domain.
- 2. analyse discrete-time systems using z-transform.
- 3. explain the Discrete-Fourier Transform (DFT) and the FFT algorithms.
- 4. design digital filters for various applications.
- 5. apply digital signal processing for the analysis of real-life signals.

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11
CO1	2	1	-	1	-	-	1	1	-	-	-
CO2	2	3	1	-	1	-	-	-	1	1	1
CO3	2	3	1	-	-	1	1	-	1	1	1
CO4	2	3	1	-	-	1	1	-	1	1	1
CO5	2	3	1	-	-	1	1	-	1	1	1

3

Department of Electrical Engineering

AVG	2	2.6	1	1	1	1	1	1	1	1	1
Name	of the cou	ırse				COMMU	JNICATI	ION ENC	JINEERI	NG	
Cours	e Code: O	E-EE-60	1B			Semester	r: 6th				
Durat	ion: 6 mc	onths				Maximu	m Marks:	100			
T 1	· 01					г ·	·: 0.1				
Teach	<u>ing Schen</u>	<u>ne</u>				Examina Mid Som	tion Sche	eme m. 15 M	mlra		
Tutori	y: 5 IIIS/W	eek				Assignm	ester Exa	<u>III: 13 Ma</u> iz: 10 M	arks arks		
Credit	Points: 3	UCK				Attendan		$\frac{12.10}{05}$ N	arks Iarks		
Crean	<u>1 01113. 5</u>					End Sem	ester Exa	m: 70 M	arks		
						Line Sein					
Objec	tive:										
1.	To under	rstand the	AM, FM	and PM	schemes	with refere	ence to SN	٧R			
2.	To under	rstand the	performa	nce of A	SK, FSK	, PSK, BPS	SK, QPSH	K in a digi	ital comm	unication	
	system										
3.	To under	rstand the	source co	oding and	channel	coding sch	nemes for	a given c	ommunic	ation link	
-	T 1	. 1.1		. 1. 1		1 1 1		•			
4.	To under	rstand the	e band wi	idth requi	rement a	nd probab	ility of er	ror in var	10us digit	tal modul	ation
5	systems To under	estand you	ious digit	al modul	otion mot	hode					
<i>J</i> .		numerica	al problem	as on the	topics st	nous idied					
Dre-R	equisite	numerie			topies su	iuicu					
1.	Analog I	Electronic	s (PC-EE	(302)							
2.	Digital F	Electronic	s (PC-EE	E 402)							
Unit				Conte	nt				Hrs	Mar	·ks
	Element	s of co	ommunica	ation sy	stem: 7	The element	ents of	a			
	commun	ication sy	ystem, ori	gin of no	ise and i	ts effect, in	nportance	e of			
	SNR in s	system de	esign. Bas	ic princip	ole of line	ear (AM) r	nodulatio	n,			
1	Generati	on of A	M waves	, Demod	ulation	of AM w	ave. Basi	ic			
1	principle	e of nonl	inear (FN	M, PM) n	nodulatio	on. Genera	tion of F	M 12			
	waves. I	Demodula	ation of F	M waves	. Sampli	ng theorem	n, samplii	ng 12			
	rate, im	pulse san	npling, re	econstruct	tion from	n samples	, Aliasing	g.			
	Analog	oulse mo	dulation-	PAM (na	tural & f	lat topped	sampling	g),			
	PWM, P	PM. Basi	c concept	of Pulse	code mo	dulation, B	lock diag	ram			
	of PCM,	Multiplex	ing-TDM,	FDM.			C C				
	Digital t	ransmissi	on: Conce	ept of Qu	antizatio	n & Quant	ization er	ror,			
	Uniform	quantize	er, Non-u	niform q	uantizer,	A-law a	nd µ -lav	v.			
	Encodin	g, coding	efficienc	y. Line c	oding &	properties.	, NRZ &	RZ,			
2	AMI, N	/ancheste	er coding	, g. PCM.	DPCM	. Base b	and pul	se			
	transmis	sion. Ma	tched filt	er. error	rate due	to noise.]	ISI. Raise	ed 08			
	cosine f	unction.	Nyauist	criterion	for dist	ortion-less	base ba	nd			
	binary transmission. Eve pattern, Signal power in binary digital										
	signal		, - _,•]	,, D	- o PC	in on	angle				
	Digital a	carrier m	odulation	1 & demo	odulation	techniqu	e: Bit rat	e.			
	Baud rat	e, Inform	nation can	acity. Sh	anon's li	mit, M-arv	v encodin	g,			
	Introduc	tion to	the diffe	rent dig	ital mo	dulation t	echnique	es- 10			

ASK.FSK, PSK, BPSK, QPSK, mention of 8 BPSK, 16 BPSK.

	Introduction to QAM, basic of 8 QAM, 16 QAM. Basic concept of Delta modulating, Adaptive delta modulation. Introduction to the concept DPCM. Basic concept of spread spectrum modulation.		
4	Introduction to coding theory: Introduction, News value & Information content, Entropy, Mutual information, Information rate, Shanon-Fano algorithm for encoding, Shanon's theorem- source coding theorem, Channel coding theorem, Information capacity theorem. Basic principle of Error control & coding.	08	

Text book:

- 1. An Introduction to Analog and Digital communication, Simon Haykin, Wiely India.
- 2. Analog communication system, P. Chakrabarti, Dhanpat Rai & Co.
- 3. Principle of digital communication, P. Chakrabarti, Dhanpat Rai & Co.
- 4. Modern Digital and Analog Communication systems, B.P. Lathi, Oxford university press

Reference books

- 1. Digital and Analog communication Systems, Leon W Couch II, Pearson Education Asia.
- 2. Communication Systems, A.B. Calson, Mc Graw Hill.
- 3. Communication Systems, R. Anand, Khanna Publications.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Compare the performance of AM, FM and PM schemes with reference to SNR
- 2. Explain noise as a random process and its effect on communication receivers
- 3. Evaluate the performance of ASK, FSK, PSK, BPSK, QPSK in a digital communication system
- 4. Identify source coding and channel coding schemes for a given communication link
- 5. Analyze various digital modulation methods

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	1	2	-	-	1	3	2	-	2	3
CO2	3	3	1	2	-	1	-	3	2	2	2	3
CO3	3	3	1	1	1	-	-	3	2	2	2	3
CO4	3	3	1	-	1	1	-	3	2	2	2	3
CO5	3	3	1	-	1	1	-	3	2	2	2	3
Avg.	3	3	1	2	1	1	1	3	2	2	2	3

Name	e of the course	VLSI AND MICRO ELECTRONICS					
Cours	se Code: OE-EE-603C	Semester: 6th					
Durat	tion: 6 months	Maximum Marks: 100)				
Teach	ning Scheme	Examination Scheme					
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutor	ial: 0 hr/week	Assignment & Quiz: 1	0 Marks				
Credi	t Points: 3	Attendance:	05 Marks				
		End Semester Exam: 7	0 Marks				
Objec	ctive:						
1.	To understand the concept of VLSI design						
2.	To understand the basics of MOS structure						
3.	To understand the process of VLSI fabrication	on in the test of the test of the test of the test of	• .• •				
4. D D	To understand the principle of logic circuit de	esign with hardware desc	ription language	e			
Pre-R	equisite						
1.	Analog Electronics (PC-EE 302)						
Z.	Digital Electronics (PC-EE 402)		Uro	Morka			
Unit	Introduction to VI SI Design: VI SI Design	Concepts Moor's Law		IVIAIKS			
	Seels of Integration (SSL MSL LSL VI SL L	U SL hasia idea arley					
	Scale of Integration (SSI, MSI, LSI, VLSI, U	JLSI - basic idea only),	08				
	Types of VLSI Chips (Analog & Digital VLSI	chips, General purpose,	00				
1	ASIC, PLA, FPGA), Design principles (Digit	al VLSI - Concept of					
1	Regularity, Granularity etc), Design Domains	s (Behavioral, Structural,					
	Physical), Y-Chart, Digital VLSI Design Steps.						
	MOS structure: E-MOS & D-MOS, Charge	e inversion in E-MOS,					
	Threshold voltage, Flat band voltage, Potent	tial balance & Charge					
	balance, Inversion, MOS capacitances.	-					
2	Three Terminal MOS Structure: Body effect						
	Four Terminal MOS Transistor: Drain curren	nt. I-V characteristics.	12				
	Current-voltage equations (simple derivation)					
	Scaling in MOSEET: Short Channel Effe	ects General scaling					
	Constant Voltage & Field scaling	cets, General sealing,					
	CMOSt CMOS invertor Simple Combinatio	nol Cotos NAND coto					
	CMOS: CMOS Inverter, Simple Combinatio	mai Gales - NAND gale					
	and NOR Gate using CMOS.						
	Micro-electronic Processes for VLSI	Fabrication: Silicon					
	Semiconductor Technology- An Overview	v, Water processing,	10				
2	Oxidation, Epitaxial deposition, Ion-implantat	tion & Diffusion,	10				
5	Cleaning, Etching, Photo-lithography - Positi						
	resist.						
	Basic CMOS Technology - (Steps in fabricatin						
	CMOS process, p-well CMOS process, Twin tub process, Silicon on						
	insulator						
	Layout Design Rule: Stick diagram with examples, Layout rules.						
4 Hardware Description Language - VHDL or Verilog Combinational 08							
-	& Sequential Logic circuit Design.						
	a sequential Logic encuit Design.						

Text book:

^{1.} Digital Integrated Circuit, J.M.Rabaey, Chandrasan, Nicolic, Pearson Education.

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

Department of Electrical Engineering

- 2. CMOS Digital Integrated Circuit, S.M.Kang & Y.Leblebici, TMH.
- 3. Modern VLSI Design, Wayne Wolf, Pearson Education.
- 4. VHDL, Bhaskar, PHI.
- 5. Advance Digital Design Using Verilog, Michel D. Celliti, PHI

Reference books

- 1. Digital Integrated Circuits, Demassa & Ciccone, John Willey & Sons.
- 2. Modern VLSI Design: system on silicon, Wayne Wolf; Addison Wesley Longman Publisher
- 3. Basic VLSI Design, Douglas A. Pucknell & Kamran Eshranghian, PHI
- 4. CMOS Circuit Design, Layout & Simulation, R.J.Baker, H.W.Lee, D.E. Boyee, PHI
- 5. Digital System Design using VHDL, R. Anand, Khanna Publications.

COURSE OUTCOME:

After completion of this course, the students will be able to

CO1: Ecplain the principle of design of VLSI circuits

CO2: Explain different MOS structure with characteristics

CO3: Apply different processes for VLSI fabrication

CO4: Use programming language for the design of logic circuits

CO5: Draw the stick diagram and layout for simple MOS circuits

CO MAPPING WITH PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	3	-	2	-	-	-	1
CO2	1	1	-	1	2	2	1	-	-	1	-	-
CO3	2	3	1	-	3	1	-	-	1	-	1	-
CO4	2	2	-	1	3	1	1	-	-	-	-	-
CO5	2	2	1	1	2	1	-	1	-	-	1	-

Name	e of the course	ECONOMICS FOR ENGINEERS					
Cours	se Code: HM-EE-601	Semester: 6th					
Durat	tion: 6 months	Maximum Marks: 100					
Teach	ning Scheme	Examination Scheme					
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	Aid Semester Exam: 15 Marks				
Tutor	ial: 0 hr/week	Assignment & Quiz: 1	0 Marks				
Credi	t Points: 3	05 Marks					
		End Semester Exam: 7	0 Marks				
Ohior							
	To understand the process of economic design	ion malaina					
1.	To understand the process of economic decis	aspects					
2.	To develop the skills to analyze financial state	aspects					
<u> </u>	To understand the basic of accounting	ements					
Pre-R							
1.	Basic understanding of Engineering processes	S					
Unit	Content	5	Hrs	Marks			
	Economic Decisions Making - Overview, Pr	oblems, Role, Decision					
	making process.	, ,					
	Engineering Costs & Estimation - Fixed.	Variable, Marginal &					
	Average Costs Sunk Costs Opportunity	Costs Recurring And					
1	Nonrecurring Costs, Incremental Costs, Cast	h Costs vs Book Costs					
	Life Cycle Costs: Types Of Estimate Estim	ating Models PorUnit	06				
	Model Segmenting Model Cost Indexes	Dower Sizing Model					
	Model, Segmenting Model, Cost Indexes,	Power-Sizing Model,					
	Cash Elow Interest and Equivalence: Cash	h Elow Diagrama					
	Catagorias & Computation Time Value Of N	I FIOW - Diagrailis,					
	Naminal & Effective Interest	toney, Debt repayment,					
2	Nominal & Effective Interest.						
-	Present Worth Analysis : End-Of-Year Conv	vention, Viewpoint Of					
	Economic Analysis Studies, Borrowed Mone	ey Viewpoint, Effect Of					
	Inflation & Deflation, Taxes, Economic Crite	eria, Applying Present	10				
	Worth Techniques, Multiple Alternatives.		-				
	Cash Flow & Rate Of Return Analysis - Cal	culations, Treatment of					
	Salvage Value, Annual Cash Flow Analysis, A	analysis Periods; Internal					
	Rate Of Return, Calculating Rate Of Return,	, Incremental Analysis;					
	Best Alternative Choosing An Analysis M	Method, Future Worth					
	Analysis, Benefit-Cost Ratio Analysis, Sensitivity And Breakeven						
	Analysis. Economic Analysis In The Public Sector - Quantifying And						
	Valuing Benefits & drawbacks.						
	Uncertainty In Future Events - Estimates And	l Their Use In Economic					
	Analysis, Range Of Estimates, Probabil	ity, Joint Probability					
	Distributions, Expected Value, Economic De						
3	vs Return, Simulation, Real Options.	,, - 41014					
	Depreciation - Basic Aspects Deterioration						
	Depreciation And Expenses Types Of Pr	onerty Depreciation	10				
	Depresation And Expenses, Types Of Th	openty, Depreciation	1				

	Calculation Fundamentals, Depreciation And Capital AllowanceMethods, Straight-LineDepreciationDecliningBalance		
	Depreciation, Common Elements Of Tax Regulations For		
	Depreciation And Capital Allowances.		
	Replacement Analysis - Replacement Analysis Decision Map,		
4	Minimum Cost Life Of A New Asset, Marginal Cost, Minimum Cost		
	Life Problems.	08	
	Inflation And Price Change - Definition, Effects, Causes, Price		
	Change With Indexes, Types of Index, Composite vs Commodity		
	Indexes, Use of Price Indexes In Engineering Economic Analysis,		
	Cash Flows that inflate at different Rates.		
	Accounting - Function, Balance Sheet, Income Statement, Financial		
5	Ratios Capital Transactions, Cost Accounting, Direct and Indirect	06	
	Costs, Indirect Cost Allocation.		

- 1. Sociology & Economics for Engineers, Premvir Kapoor, Khanna Publishing House.
- 2. Engineering Economics, James L.Riggs, David D. Bedworth, Sabah U. Randhawa 4e , McGraw-
 - Hill Education.
- 3. Engineering Economics Analysis, Donald Newnan, Ted Eschembach, Jerome Lavelle , OUP
- 4. Principle of Engineering Economic Analysis, John A. White, Kenneth E.Case, David B.Pratt, Wiley

Reference books

- 1. Engineering Economy, Sullivan and Wicks, Koelling, Pearson
- 2. Engineering Economics, R.Paneer Seelvan, PHI
- 3. Engineering Economics Analysis, Michael R Lindeburg, ,Professional Pub

COURSE OUTCOME:

Student will be able to:

CODE	DESCRIPTION
CODE	DESCRIPTION
HSMC-301/ HM- 601/ HM-EE-601. CO 1	Make different economic decisions and estimate engineering costs by applying different cost estimation models.
HSMC-301/ HM- 601/ HM-EE-601. CO 2	Create cash flow diagrams for different situations and use different interest formulae to solve associated problems. Take decisions regarding different engineering projects by using various criteria like rate of return analysis, present worth analysis, cost-benefit analysis etc.
HSMC-301/ HM-	Incorporate the effect of uncertainty in economic analysis by using

COURSE OUTCOMES (COs)

601/ HM-EE-601.	various concepts like expected value, estimates and simulation
CO 3	
HSMC-301/ HM-	Understand the concepts of depreciation, replacement analysis, scope
601/ HM-EE-601	of Finance and the role of financial planning and management, the
.CO 4	process of inflation and use different price

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	1	-	-	-	-	-	-	-	-		-	-
CO2	-	-	3	-	-	-	-	-	-	-	-	-
CO3	-	-	-	2	-	-	-	-	-	-	-	-
CO4	-	2	-	-	-	-	-	-	-	-	-	-
Average	.25	.5	0.75	0.50	-	-	-	-	-	-	-	-

POWER SYSTEM-II LABORATORY			
Semester: 6 th			
Maximum marks:100			
Examination scheme:			
Continuous Internal Assessment:40			
External Assessment: 60			
periments:			
elay relay and off load time delay relay			
eng reng and orr roug time deray renag.			
ion characteristics of CT and PT.			

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex JIS GROUP

3.	Test to find out characteristics of
	(a) under voltage relay
	(b) earth fault relay.
4.	Study on DC load flow
5.	Study on AC load flow using Gauss-seidel method
6.	Study on AC load flow using Newton Raphson method.
7.	Study on Economic load dispatch.
8.	Study of different transformer protection schemes by simulation
9.	Study of different generator protection schemes by simulation
10.	Study of different motor protection schemes by simulation
11.	Study of different characteristics of over current relay.
12.	Study of different protection scheme for feeder.

COURSE OUTCOMES:-

PCEE691.1	Demonstrate the performance of different types of relays.
PCEE691.2	Determine polarity, ratio and magnetization characteristics of CT and PT.
	properties.
PCEE691.3	Demonstrate AC and DC load flow by simulation.
PCEE691.4	Design different protection schemes for transformer, generator, motor and feeder by
	simulation
PCEE691.5	Determine economic load dispatch of a power plant.

CO-PO MAPPING:-

COs		PROGRAM OUTCOMES(POs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PCPCEE691.1	3	-	-	3	-	-	-	-	3	-	-	3
PCPCEE691.2	3	-	-	3	-	-	-	-	3	-	-	3
PCPCEE691.3	3	-	-	3	3	-	-	-	3	-	-	3
PCPCEE691.4	3	-	-	3	3	-	-	-	3	-	-	3
PCPCEE691.5	3	-	-	3	-	-	-	-	3	-	-	3
AVERAGE	3	0	0	3	1.2	0	0	0	3	0	0	3

Name	of the course	MICRO PROCESSOR AND MICRO CONTROLLER					
		LABORATORY					
Course	e Code: PC-FF 692	Semester: 6 th					
Course	c couc. 1 C-LL 0/2	Semester. 0					
Durat	ion: 6 months	Maximum marks:100					
Teach	ing Scheme	Examination scheme:					
Theor	ry: 0 hr/week	Continuous Internal Assessment:40					
Tutori	al: 0 hr/week	External Assessment: 60					
Practi	cal: 2 hrs/week						
<u> </u>							
Credit	Points: 1						
	Laboratory Ex	periments:					
1.	Programs for 16 bit arithmetic operations for	8086 (using various addressing modes)					
2.	Program for sorting an array for 8086						
3.	Program for searching for a number or charac	eter in a string for 8086					
4.	Program for String manipulations for 8086						
5.	Program for digital clock design using 8086.						
6.	6. Interfacing ADC and DAC to 8086.						
7.	7. Parallel communication between two microprocessors using 8255.						
8.	Serial communication between two micropro-	cessor kits using 8251.					
9.	Interfacing to 8086 and programming to cont	rol stepper motor.					
10.	Programming using arithmetic, logical and bit	t manipulation instructions of 8051					
11.	Program and verify Timer/Counter in 8051.						
	•						

-	
12	Program and verify interrupt handling in 8051
12.	riogram and verify interrupt handling in 6051.
13	UART operation in 8051
15.	
14	Interfacing LCD to 8051
17.	
15	Interfacing matrix or keyboard to 8051
15.	Interfacing matrix of Reyboard to 0001.
16	Data transfer from peripheral to memory through DMA controller 8237/8257
10.	Data transfer from peripheral to memory through DWA controller 0257/0257

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain the architecture of 8086 and 8051 and develop micro- processor/ microcontroller based systems.
- 2. Illustrate the assembly language programming of 8086, 8051
- 3. Explain the interface different peripheral with 8086 and 8051
- 4. Analyze microprocessor, microcontroller, PIC and ARM processors

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name	of the course	ELECTRICAL AND ELECTRONICS DESIGN				
		LABORATORY				
Course	e Code: PC-EE 681	Semester: 6 th				
Durat	ion: 6 months	Maximum marks:100				
Teach	ing Scheme	Examination scheme:				
Theor	y: 1hr/week	Continuous Internal Assessment:40				
Tutori	al: 0 hr/week	External Assessment: 60				
Practi	cal: 4 hrs/week					
Credit	Points:3					
	GROUP A					
1.	Designing a heating element with specified w	vattage, voltage and ambient temperature.				
2.	Designing an aircore grounding reactor with fault current	specified operating voltage, nominal current and				
3.	Designing the power distribution system for a	a small township				
4.	Designing a double circuit transmission line for	or a given voltage level and power (MVA) transfer.				
5.	Wiring and installation design of a multiste dwelling flats with a lift and common pump)	pried residential building (G+4,not less than 16				
	GROUP B					
6.	Designing an ONAN distribution transformer.					
7.	Designing a three phase squirrel cage induction	on motor.				
8.	Designing a three phase wound rotor induction	on motor.				
9.	Designing a split phase squirrel cage induction	n motor for a ceiling fan or a domestic pump.				
10.	Designing a permanent magnet fractional hp	servo motor .				
	GROUP C					

pr. Sudhir Chavlanalanalabitut Kalan Departmentigfo Electricaly, West Bengal

of Technology & Sports Complex (Formerly West Ben**Engineosips**f Technology) JIS GROUP

Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

11.	Design the control circuit of a Lift mechanism
12.	Design a controller for speed control of DC machine.
13.	Design a controller for speed control of AC machine.
14.	Electronic system design employing electronic hardware (Analog, Digital, Mixed signal), microcontrollers, CPLDs, and FPGAs, PCB design and layout leading to implementation of an application

Topics to be covered in the Lecture class:

1.	Basic concepts on measurements; Noise in electronic systems; Sensors and signal conditioning circuits; Introduction to electronic instrumentation and PC based data acquisition; Electronic system design, Analog system design, Interfacing of analog and	01
	digital systems, Embedded systems,; System assembly considerations	

Evaluation Method:

- 1. The students would INDIVIDUALLY design the equipment and systems as per specifications provided by the class teacher following established procedures.
- 2. For each student, one item from each of the three groups would be chosen.
- 3. For unspecified items of specification and or specifications of wires, cables etc., data should be taken by students from handbooks and Indian standard.
- 4. Students should spend the allotted periods for carrying out design computations. 5.
- Their attendance shall be recorded.
- 6. Students should maintain a dedicated bound notebook for recording design activities like calculations, formulae used, sketches, flowcharts etc. The notebook should be regularly submitted to the class teacher for review and signature.
- Evaluation would be based on (i) Class attendance (20%), (ii) Design Note Book (30%) (iii) Design Report (30%) (iv) End of semester viva (20%,)

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain basic concept of measurement, noise in electronic system, sensor and signal conditioning circuits
- 2. Analyse PC based data acquisition systems
- 3. Construct circuits with appropriate instruments and safety precautions

4. Design heating elements, air core grounding reactor, power distribution system for small township, double circuit transmission line and Electric machines, electronic hardware for controller of

lift, speed of AC/DC motor, and for an application with analog, digital, mixed signal, microcontroller and PCB

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

7th Semester

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

Semester-VII

Name of the course	ELECTRIC DRIVE						
Course Code: PC-EE 701	Semester: 7 th						
Duration: 6 months	Maximum Marks: 100						
Teaching Scheme	Examination Scheme						
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks						
Tutorial: 0 hr/week	Assignment & Quiz: 10 Marks						
Practical: 0 hrs/week	Attendance: 05 Marks						
Credit Points: 3	End Semester Exam: 70 Marks						
Objective:	171						
1. To understand basic concept, classification and principle of operation of Electric Drive.							

	1		
2.	To understand methods of starting and braking of Electric Drive.		
3.	To understand methods of control of speed of DC and AC Drives.		
4.	To solve problem related to Electric Drive.		
Pre-R	equisite		
1.	Basic Electrical Engineering (ES-EE-101)		
2.	Electric Machine-I (PC-EE-401)		
3.	Electric Machine-II(PC-EE-501)		
Unit	Content	Hrs	Marks
1	Electric Drive: Concept, classification, parts and advantages of	5	
	electrical dives. Types of Loads, Components of load toques,		
	Fundamental torque equations, Equivalent value of drive parameters		
	for loads with rotational and translational motion. Determination of		
	moment of inertia, Steady state stability, Transient stability. Multi-		
	quadrant operation of drives. Load equalization.		
2	Motor power rating: Thermal model of motor for heating and	5	
	cooling, classes of motor duty, determination of motor rating for		
	continuous, short time and intermittent duty, equivalent current,		
	torque and power methods of determination of rating for fluctuating		
	and intermittent loads. Effect of load inertia & environmental		
	factors.		
3	Stating of Electric Drives: Effect of starting on Power supply,	6	
	motor and load. Methods of stating of electric motors. Acceleration		
	time, Energy relation during stating. Methods to reduce the Energy		
	loss during starting.		
	Braking of Electric Drives: Types of braking, braking of DC		
	motor, Induction motor and Synchronous motor, Energy loss		
4	during braking,	0	
4	DC motor drives: Modeling of DC motors, State space modeling,	8	
	block diagram & Transfer function, Single phase, three phases fully		
	DC drives. Dever factor, supply harmonics and ringle in mater		
	be unves. Power factor, supply fiatmonics and ripple in motor surrant. Chapper controlled DC motor drives. Closed loop control of		
	DC Drives		
5	Induction motor drives: Stator voltage variation by three phase	6	
5	controllers. Speed control using chopper resistance in the rotor	0	
	circuit slip power recovery scheme. Pulse width modulated inverter		
	fed and current source inverter fed induction motor drive		
	Volts/Hertz Control Vector or Field oriented control		
6	Synchronous motor drives: Variable frequency control. Self	5	
Ũ	Control. Voltage source inverter fed synchronous motor drive.	c	
	Vector control.		
7	Introduction to Solar and Battery Powered Drive, Stepper motor,	5	
	Switched Reluctance motor drive		
	Industrial application:		
	Drive consideration for Textile mills, Steel rolling mills, Cement		
	mills, Paper mills, Machine tools. Cranes & hoist drives.		

Text books:

- 1. Fundamental of Electrical Drives, G.K. Dubey, New Age International Publication.
- 2. Electric Drives, Vedam Subrahmanyam, TMH
 3. A first course on Electrical Drives, S.K. Pillai, New Age International Publication.

Reference books:

- 1. Electric motor drives, R. Krishnan, PHI
- 2. Modern Power Electronics & Ac drives, B.K. Bose, Pearson Education.
- 3. Electric Motor & Drives. Austin Hughes, Newnes.

Course Outcome:

Course outcome codes	Statement
PC-EE-701.1	Apply the knowledge of dynamics of electrical machines on designing of electric drives.
PC-EE-701.2	Investigate the ways of controlling of different types of DC Motor drives.
PC-EE-701.3	Illustrate the different speed control of different types of AC Motor drives.
PC-EE-701.4	Simulate electrical drive systems through PSIM and MATLAB-SIMULINK software.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	1	1	-	1	1	1	3	2	3
CO2	2	3	2	3	1	1	1	-	1	1	1	3	2	3
CO3	3	3	3	2	1	1	1	-	1	1	1	3	2	3
CO4	3	3	3	2	1	1	1	-	1	1	1	3	3	2
CO5	2	2	2	2	2	2	3	-	2	2	1	2	2	2
Average	3	3	3	2	1	1	1	0	1	1	1	3	2	3

Name	of the course	CONTROL SYSTEM DESIGN						
Course	e Code: PE-EE 701 A	Semester: 7 th						
Durat	ion: 6 months	Maximum Marks: 100						
Teach	ing Scheme	Examination Scheme						
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks					
Tutori	al: 0 hr/week	Assignment & Quiz: 10) Marks					
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks					
Credit	t Points: 3	End Semester Exam: 7	0 Marks					
Objec	tive:							
1.	To understand basic design specifications.							
2.	To understand design of control system in tim	ne domain, frequency de	omain and in St	ate space.				
3.	To understand design of PID controllers			•				
4.	To solve problem related to design of control s	system.						
Pre-R	equisite	2						
1.	Basic Electrical Engineering (ES-EE-101)							
2.	Control system (PC-EE-503)							
Unit	Content		Hrs	Marks				
1	Design Specifications: Introduction to de	esign problem and	6					
	philosophy. Introduction to time domain and fr							
	design specification and its physical relevance							
	transient and steady state response. Effect of	addition of pole on						
	system performance. Effect of addition of zero	on system response.						
2	Design of Classical Control System in	the time domain:	8					
	Introduction to compensator. Design of	Lag, lead lag-lead						
	compensator in time domain. Feedback	and Feed forward						
	compensator design. Feedback compensati	ion. Realization of						
	compensators.							
3	Design of Classical Control System in t	frequency domain:	8					
	Compensator design in frequency domain to i	improve steady state						
	and transient response. Feedback and Feed for	orward compensator						
	design using bode diagram.							
4	Design of PID controllers: Design of P	P, PI, PD and PID	6					
	controllers in time domain and frequency dom	nain for first, second						
	and third order systems. Control loop with aux	kiliary feedback - Feed						
	forward control.							
5	Control System Design in state space: Rev	view of state space	8					
	representation. Concept of controllability & c	observability, effect of						
	pole zero cancellation on the controllability &	c observability of the						
	system, pole placement design through state f	feedback. Ackerman's						
	Formula for feedback gain design. Design of	Observer. Reduced						
	order observer. Separation Principle.							
6	Nonlinearities and its effect on system perform	mance: Various	4					
	types of non-linearities. Effect of various non-l	linearities on system						
	performance. Singular points. Phase plot analy	vsis.						

- 1. Control System Engineering, N. Nise, 8th Edition, John Wiley, 2019.
- 2. Control System Engineering, , I. J. Nagrath and M. Gopal, New Age International Publishers, 2018.
- 3. Design of Feedback Control Systems, R.T. Stefani and G.H. Hostetter, Saunders College Pub, 1994.
- 4. Linear control system analysis and design (conventional and modern), John J .D'azzo, C.H. Houpis, McGraw Hill, 1995.

Reference books:

- 1. Digital Control Engineering, M. Gopal, New Age International Publishers, 2014.
- 2. Automatic Control system, B. C. Kuo, F. Golnaraghi, Wiley, 2014.
- 3. Modern Control Engineering, K. Ogata, 5th Edition, Prentice Hall, 2010.

Course Outcomes:

After completion of this course, the learners will be able to

- 1. Explain the effect of gain, addition of pole and zeros on system's performance.
- 2. Describe time domain and frequency domain design specifications.
- 3. Demonstrate the effect of nonlinearity on system performance.
- 4. Analyze control system in time domain , in frequency domain and in state space.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	1	1	3	2	1	1	3

Name	e of the course	ELECTRICAL ENERGY CONSERVATION & AUDITING					
Cours	e Code: PE-EE 701B	Semester: 7 th					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme					
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks				
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks				
Credi	t Points: 3	End Semester Exam: 7	0 Marks				
Objec	tive:						
1.	To understand the basic of energy resources,	energy security, energy	conservation an	d pollution.			
2.	To understand the energy management conce	epts.		•			
3.	To understand energy conservation principles	and measures					
4.	To learn the methods of energy audit and usage	ge of instruments					
Pre-R	equisite						
1.	Basic Electrical Engineering (ES-EE-101)						
2.	Electric Machine (PC-EE-401, PC-EE-501)						
3.	Electric Power system (PC-EE-502, PC-EE-601	l)					
4.	Control System (PC-EE-503)						
Unit	Content		Hrs	Marks			
1	Energy Scenario: Commercial and Non-	commercial energy,	5				
	Primary energy resources, commercial en	ergy production, final					
	energy consumption, energy needs of growing	ng economy, long term					
	energy scenario, energy pricing, energy secto	r reforms, energy and					
	environment, energy security, energy co	onservation and its					
	importance, restructuring of the energy su	upply sector, energy					
	strategy for the future, air pollution, clim	ate change. Energy					
	Conservation Act-2001 and its features.	0 00					
2	Basics of Thermal Energy management : T	hermal Basics-fuels,	5				
	thermal energy contents of fuel, temperatu	ire & pressure, heat					
	capacity, sensible and latent heat, evaporation	n, condensation, steam,					
	moist air and humidity & heat transfer, units a	and conversion.					
3	Energy Management & Audit: Definition,	energy audit, need,	6				
	types of energy audit. Energy manageme	nt (audit) approach,					
	understanding energy costs, bench marking,	energy performance,					
	matching energy use to requirement,	maximizing system					
	efficiencies, optimizing the input energy requ	irements, fuel &					
	energy substitution, energy audit instruments	. Material and Energy					
	balance: Facility as an energy system, method	ls for preparing process					
	flow, material and energy balance diagrams.						
4	Energy Efficiency in Electrical Systems: E	lectricity tariff, load	8				
	management and maximum demand co	ntrol, power factor					
	improvement, selection & location of cap	acitors, Performance					

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

	assessment of PF capacitors, distribution and transformer losses.		
	Electric motors: Types, losses in induction motors, motor efficiency,		
	factors affecting motor performance rewinding and motor		
	ranlagement igguage anatory goving anotheritigg with another		
	replacement issues, energy saving opportunities with energy		
	efficient motors.		
5	Energy Efficiency in Industrial Systems: Compressed Air System:		
	Types of air compressors compressor efficiency efficient		
	compressor operation Compressed air system components conscitu		
	compressor operation, compressed an system components, capacity		
	assessment, leakage test, factors affecting the performance and		
	savings opportunities in HVAC, Fans and blowers: Types,	10	
	performance evaluation, efficient system operation, flow control		
	strategies and energy conservation opportunities. Pumps and		
	Pumping System: Types performance evaluation efficient system		
	i uniping system. Types, performance evaluation, enterent system		
	operation, flow control strategies and energy conservation		
	opportunities. Cooling Tower: Types and performance evaluation,		
	efficient system operation, flow control strategies and energy saving		
	opportunities, assessment of cooling towers.		
6	Energy Efficient Technologies in Electrical Systems: Maximum	6	
	demand controllers, automatic power factor controllers, energy		
	efficient motors, soft starters with energy saver, variable speed		
	drives energy afficient transformers electronic hellest occupancy		
	urives, energy efficient transformers, electronic banast, occupancy		
	sensors, energy efficient lighting controls, energy saving potential of		
	each technology.		

Text books:

- 1. Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-1, General Aspects (available online)
- 2. Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-3, Electrical Utilities (available online)
- 3. Electric Energy Utilization and Conservation, S. C. Tripathy, Tata McGraw Hill, 1991.

Reference books:

1. Success stories of Energy Conservation by BEE, New Delhi (www.bee-india.org)

Course Outcome: After completion of this course, the learners will be able to

Course outcome codes	Statement
PE-EE 701B.1	To understand the technology, economics and regulation related issues associated with energy conservation and energy auditing
PE-EE 701B.2	To analyse the viability of energy conservation projects
PE-EE 701B.3	To integrate various options and assess the business and policy environment regarding energy conservation and

	energy auditing
PE-EE 701B.4	To reframe the strategic and policy recommendations on energy conservation and energy auditing

COs	РО	РО	РО	РО	PO	PO	PO	PO	РО	P01	P01	P01	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
PE-EE 701B.1	3	3	2	2	1	2	2	-	-	1	1	2	3	3
PE-EE 701B.2	3	3	3	2	2	2	2	-	2	2	2	3	3	2
PE-EE 701B.3	3	3	3	3	3	3	3	-	3	-	3	3	3	3
PE-EE 701B.4	3	2	3	2	3	3	3	-	2	-	3	3	3	3
Averag e	3	3	3	2	2	2	2	-	2	1	2	3	3	3

Name	of the course	POWER GENERATION ECONOMICS				
Course Code: PE-EE 701C		Semester: 7 th				
Duration: 6 months		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theory: 3 hrs/week		Mid Semester Exam: 15 Marks				
Tutorial: 0 hr/week		Assignment & Quiz: 10 Marks				
Practi	cal: 0 hrs/week	Attendance: 05 Marks				
Credit Points: 3		End Semester Exam: 70 Marks				
Objective:						
1.	To understand the basics of economics of Power generation.					
2.	To understand different methods of Tariff.					
3.	To understand the optimization with unit commitment in power system.					
4.	To understand the principle of economic load dispatch.					
5.	To understand the method of state estimation and load forecasting in a power system.					
Pre-Requisite						
1.	Electric Power system-I (PC-EE-502)					
2.	Electric Power system-II (PC-EE-601)					
Unit	Content	178	Hrs	Marks		

1		07
1	Economics of Generation: Cost of power generation- Thermal,	07
	Hydro and Nuclear. Types of Consumers in a distribution system-	
	Domestic, Commercial, Industrial etc. Concept of load factor, plant	
	capacity factor, plant use factor, diversity factor, demand factor.	
	Choice of size and number of generation units.	
2	Tariff: Block rate, flat rate, two part, maximum demand, Power	08
	factor and three part tariffs. Subsidization and Cross subsidization.	
	Availability tariff of generation companies. Pool tariff of	
	transmission companies. Availability based tariff (ABT).	
3	Unit Commitment: Constraints in Unit Commitment, Spinning	07
	reserve, Thermal unit constraints, Hydro constraints, Must run, Fuel	
	constraints. Unit commitment solution methods,	
4	Economic Dispatch: Transmission loss formulae and its application	08
	in economic load scheduling. Computational methods in economic	
	load scheduling. Active and reactive power optimization	
5	State Estimation and load forecasting in power system:	08
	Introduction, state estimation methods, concept of load forecasting,	
	load forecasting technique and application in power system.	

- 1. Economic operation of Power System, L.K. Kirchmayar Wiely India Pvt. Ltd, 2009
- 2. Power system Analysis, operation & control, A. Chakrabarty & S. Haldar, PHI, 2010.
- 3. Modern power system analysis, D.P. Kothari & I.J. Nagtrath, Tata McGraw Hill, 2007.

Reference books:

1. Power generation operation & control, A.J. Wood & B.F. Wollenberg, G.B. Sheble, Wiley, 2013 2. Operation and control in power system, P.S.R. Murthy, BSP Publication. 2009

Course Outcome: After completion of this course, the learners will be able to

- 1. Explain the different terms e.g. load factor etc for economics of generation.
- 2. Apply different types of tariff for electricity pricing.
- 3. Analyze the operation of power system with unit commitment.
- 4. Determine generation levels such that the total cost of generation becomes minimum for a defined level of load & the state of the system given by the voltage magnitudes and phase angles at all buses

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	1	3
CO2	3	3	1	2	-	1	-	3	1	1	2	3
CO3	3	3	1	1	1	-	-	3	3	1	1	3
CO4	3	2	1	-	1	1	-	2	1	2	-	1
Avg.	3	3	1	2	1	179	1	3	2	1	1	3

Name of the course		ARTIFICIAL INTELLIGENCE				
Course Code: OE-EE-701A		Semester: 7th				
Duration: 6 months		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theor	ry: 3 hrs/week	Mid Semester Exam: 15 Marks				
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks			
Credi	t Points: 3	Attendance: 05 Marks				
		End Semester Exam: 7	0 Marks			
Objec	tive:					
1.	To understand the basic concepts, theories and state-of-the-art techniques of artificial					
	intelligence.					
2.	To understand basic concepts and applicatio	ons of machine learning.				
3.	To learn the application of machine learning	g /A.I algorithms in the	different fields	of science,		
	medicine, finance etc.					
Pre-R	equisite					
1.	Programming for problem solving (ES-CS201)					
2.	Mathematics (BS-M301)					
3.	Data structure and algorithm(OE-EE-501A)					
Unit	Content	Content				
	Introduction: Overview of Artificial intellige	ence- Problems of AI,				
	AI technique, Tic - Tac - Toe problem.					
	Intelligent Agents: Agents & environment,	nature of environment,				
1	structure of agents, goal based agents, utility	based agents, learning				
	agents.	06				
	Problem Solving: Problems, Problem Space	& search: Defining the				
	problem as state space search, product	ion system, problem				
	characteristics issues in the design of search programs					
	Search techniques: Solving problems by	Searching: problem				
	solving agents, searching for solutions: unife	orm search strategies:				
	breadth first search, depth first search, d					
	bidirectional search comparing uniform search					
	Heuristic search strategies: Greedy best-fir					
2	memory bounded bouristic search: local s					
2	inteniory bounded neuristic search. local s	12				
	opumization problems: Hill climbing search	, simulated annealing	12			
	search, local beam search, genetic algorithms					
	problems, local search for constraint satisfacti					
	Adversarial search : Games, optimal decis					
	games, the minimax search procedure,					
	additional refinements, iterative deepening					
	Knowledge & reasoning: Knowledge re					
3	representation & mapping, approaches to kno	05				
	issues in knowledge representation					

Dr. Sudhir Charlenal Snal Abitut Kalan Departmenting for Electrical y, West Bengal of Technology & Sports Complex IIS GROUP (Formerly West Ben**Engineering** (Applicable from the academic session 2018-2019)

4.	Using predicate logic: Representing simple fact in logic, representing instant & ISA relationship, computable functions & predicates, resolution, natural deduction. Probabilistic reasoning [4] Representing knowledge in an uncertain domain, the semantics of Bayesian networks, Dempster-Shafer theory, Fuzzy sets & fuzzy logic	06	
5.	Natural Language processing: Introduction, Syntactic processing, semantic analysis, discourse & pragmatic processing. Learning: Forms of learning, inductive learning, learning decision trees, explanation based learning, learning using relevance information, neural net learning & genetic learning. Expert Systems: Representing and using domain knowledge, expert system shells, knowledge acquisition	08	

Text book:

- 1. Artificial Intelligence, K, Knight, E. Rich, S.B. Nair, 3rd Edition TMH
- 2. A classical approach to Artificial Intelligence, M.C. Trivedi, 2nd Edition, Khanna Publishing House, New Delhi
- 3. Introduction to Artificial Intelligence & Expert Systems, D.W. Patterson, PHI
- 4. Artificial Intelligence A Modern Approach, Stuart Russel, Peter Norvig, Pearson

Reference books

- 1. Computational Intelligence, D. Poole, Alan Mackworth, and Randy Goebe, IOUP
- 2. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 3. Expert Systems principle and programming, J.C. Giarranto, Cengage Learing.

Course Outcome:

After completion of this course, the learners will be able to

COs	CO Statement
CO1	Students will be able to <i>identify</i> the AI problems and <i>describe</i> the learning mechanisms.
CO2	Students will be able to <i>understand</i> the concept of Logic Programming in AI, <i>explain</i> the knowledge representation techniques and <i>choose</i> the planning methodology.
CO3	Students will be able to <i>formulate</i> a problem to an appropriate search problem whenever suitable and produce an optimal solution using appropriate search algorithms.
CO4	Students will be able to <i>design</i> the basic structure of an Expert System to cater the requirement of it and <i>understand</i> the scope of statistical reasoning.

	Artificial Intelligence											
co's		PO'S 181										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

	r. Su <u>@</u> hir C f Technolog	handra Su y & Sports	ir Institute Complex	3 D	epartm Er	ents of ngineer	Electri ing	caB	3	3	3	2
1	I S GBOUP	3	1	2	2		2	2	2	2	2	3
CO3		3	2	-	2		1	-	2	-	2	3
CO4	2		2	3	1	1	1	3	1	1	1	
Average	2.33	2.67	1.67	2.67	1.67	2.00	1.50	2.67	2.00	2.00	2.00	2.67

Name	of the course	INTERNET OF THINGS					
Cours	e Code: OE-EE-701B	Semester: 7th					
Durat	ion: 6 months	Maximum Marks: 100)				
Teach	ing Scheme	Examination Scheme					
Theor	ry: 3 hrs/week	Mid Semester Exam: 15 Marks					
Tutori	al: 0hr/week	Assignment & Quiz: 10 Marks					
Credit	t Points: 3	Attendance: 05 Marks					
		End Semester Exam: 70 Marks					
Objec	tive:						
1.	To understand the terminology, technology a	and its applications					
2.	To understand the concept of M2M (machine	e to machine) with neces	sary protocols				
3.	To learn the Python Scripting Language which	n is used in many IoT dev	vices.				
4.	To understand the Raspberry PI platform, that	t is widely used in IoT ap	oplications.				
5.	To understand the implementation of web bas	sed services on IoT device	ces.				
Pre-R	equisite						
1.	Programming for problem solving (ES-CS201)						
Unit	Content	Hrs	Marks				
	Introduction to Internet of Things: Definition						
	of IoT, Physical design of IoT - IoT Protoco	ls, IoT communication					
	models, lot Communication APIs, IoT ena	abled technologies -					
1	Wireless sensor networks, Cloud computin	g, Big data analytics,	08				
	Communication protocols. Embedded syste	ems. IoT levels and					
	templates. Domain specific IoTs - Home.	City, Environment,					
	Energy, Retail, Logistics, Agriculture, Industr	v. health and Lifestyle.					
	IoT and M2M: Software defined network	s, network function					
2	virtualization, difference between SDN and N	NFV for IoT. Basics of	06				
	IoT System Management with NETCOZE	. YANG- NETCONF.					
	YANG. SNMP NETOPEER	,,,					
	Introduction to Python: Language features of	f Python, Data types,					
	data structures. Control of flow, functions, m	odules, packaging, file	08				
3	handling, data/time operations, classes, Exce	ption handling. Python					
	packages - JSON, XML, HTTP Lib, URL Lib	o. SMTP Lib.					
	r	,					
	IoT Physical Devices and Endpoints: Introduced	ction to Raspberry PI					
	- Interfaces (serial, SPI, I2C), Programming	- Python program with	08				
4.	Raspberry PI with focus of interfacing extern	nal gadgets, controlling					
	output, reading input from pins.						
	IoT Physical Servers and Cloud Offerings: I	Introduction to Cloud					
	Storage models and communication APIs. W	/ebserver - Web server	08				
5.	for IoT. Cloud for IoT. Python web apr	blication framework	_				
	Designing a RESTful web API						

Text book:

- 1. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015.
- 2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2016.
- 3. IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, Pearson Education, 2017.
- 4. Internet of Things, K.G. Srinivasa , G.M. Siddesh, R.R. Hanumantha, CENGAGE Leaning India, 2018

Reference books:

- 1. Internet of Things (A Hands-on-Approach), Arshdeep Bahga and Vijay Madisetti, VPT, 2014.
- 2. Internet of Things: Architecture and Design Principles, Raj Kamal , McGraw Hill Education,
- 2017.

Course Outcomes:

Objec	tive:
CO1.	Tell the terminology, technology and its applications
CO2.	Understand the concept of M2M (machine to machine) with necessary protocols
CO3.	Interpret the Python Scripting Language which is used in many IoT devices.
CO4.	Experiment with the Raspberry PI platform, that is widely used in IoT applications.
CO5.	Apply web based services on IoT devices.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	3	2	-	2	3
CO2	3	3	1	2	-	1	-	3	2	2	2	3
CO3	3	3	1	1	1	-	-	3	2	2	2	3
CO4	3	3	1	-	1	1	-	3	2	2	2	3
CO5	3	3	1	-	1	1	-	3	2	2	2	3
Avg.	3	3	1	2	1	1	1	3	2	2	2	3

Name of the course	COMPUTER GRAPHICS
Course Code: OE-EE-701C	Semester: 7th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks

Tutor	ial: 0hr/week	Assignment & Quiz: 10 Marks										
Credi	t Points: 3	Attendance:	05 Marks									
]	End Semester Exam:	70 Marks									
Objec	ctive:											
1.	To understand fundamental concepts and theor	ry of computer graphi	cs									
2.	To understand the concept of graphics systems	s, input devices, geom	etric representation	tions, $2D/3D$								
	transformations, viewing and projections and v	visible surface detection	n.									
Pre-Requisite												
1.	Programming for problem solving (ES-CS201)											
2.	Mathematics (BS-M301)											
3.	Data structure and algorithm(OE-EE-501A)											
Unit	Content		Hrs	Marks								
	Introduction to Computer graphics &	graphic systems:										
	Overview of computer graphics, representing	pictures, preparing,										
	presenting & interacting with pictures	for presentations;										
1	Visualization & image processing; RGB color	model, direct coding,	06									
	lookup table; storage tube graphics display, Ra	aster scan display, 3D										
	viewing devices, Plotters, printers, digitizers, L	Light pens etc.; Active										
	& Passive graphics devices; Computer graphics											
	Scan conversion: Points & lines, Line drawing	g algorithms; DDA										
2	algorithm, Bresenham's line algorithm, Circle	05										
	Ellipse generating algorithm; scan line poly	05										
	boundary fill algorithm, flood fill algorithm.											
	2D Transformations and viewing: Basic	transformations:										
3	translation, rotation, scaling; Matrix representat	tions & homogeneous										
	coordinates, transformations between coordina	ate systems; reflection										
	shear; Transformation of points, lines, parallel	l lines, intersecting										
	lines. Viewing pipeline, Window to view	v port co-ordinate	10									
	transformation, clipping operations, point cli	ipping, line clipping,	12									
	clipping circles, polygons & ellipse. Cohen a	and Sutherland line										
	clipping, Sutherland-Hodgeman Polygon c	clipping, Cyrus-beck										
	clipping method											
	3D transformation & viewing: 3D transform	hations: translation,										
	rotation, scaling & other transformations. Rotat	tion about an arbitrary										
	axis in space, reflection through an arbitrary p	blane; general parallel										
	projection transformation; clipping, view port c	<u>clipping, 3D viewing</u>										
	Plane Curves and Surfaces: Curve Representat	tion, Nonparametric	06									
4	Curves, Parametric Curves, Parametric Represe	entation of a Circle,	00									
-	of a Derebola Deremetric Representation of	f a Hyperbola										
	Dragadura for using Conic Sactions. The Gana	rol Conic Equation:										
	Papersontation of Space Curves, Cubic Spline	Bazier Curves P										
	spline Curves B-spline Curve Fit B spline	S, , DELIEI CUIVES, D-										
	Parametric Cubic Curves Quadric Surfaces Be	vier Surfaces										
	i arametric Cubic Curves, Quauric Surfaces. De	Surraces										

5	Visible-Surface Determination: Techniques for efficient Visible- Surface Algorithms, Categories of algorithms, Back face removal, The z-Buffer Algorithm, Scan-line method, Painter's algorithms (depth sorting), Area sub-division method, BSP trees, Visible- Surface Ray Tracing comparison of the methods	06	
6	Color & shading models : Light & color model; interpolative shading model; Texture. Introduction to Ray-tracing: Human vision and color, Lighting, Reflection and transmission models	05	

Text book:

- 1. Computer Graphics (C version), Hearn, Baker, Pearson Education, 2002
- 2. Schaum's outlines Computer Graphics , Z. Xiang, R. Plastock , McGraw Hill Education, 2000.
- 3. Mathematical Elements for Computer Graphics, D. F. Rogers, J. A. Adams, McGraw Hill Education, 2017.

Reference books:

1. Computer Graphics, Multimedia and Animation, M.K. Pakhira, PHI, 2010.

COURSE OUTCOMES:

- CO1: Students able to understand and describe the basic concepts and applications of different graphics systems and applications of computer graphics.
- CO2: Students able to relate and use various design algorithms for scan conversion, filling of basic objects, geometric transformations on graphics objects and their application in composite form
- CO3: Students able to extract scene with different clipping methods and its transformation to graphics display device. Also able to explore and explain projections and visible surface detection techniques.
- CO4: Students able to justify and design their perspective of modern computer system with modeling, analysis and interpretation of 2D and 3D visual information attributes for all aspects.

	COMPUTER GRAPHICS												
CO'S		PO'S											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2		3		3	3	2		3	2	2	
CO2	2	3	3		3		2	3	3		3	1	
CO3	2	3	2		1	2	2	3	2			2	
CO4	2	3	2	2	2		2	3	2	2	3	3	

Department of Electrical Engineering

JIS GROUP

Avg	2.25	2.75	2.33	2.50	2.00	2.50	2.25	2.75	2.33	2.50	2.67	2.00

Name	of the service		Л			
Name	of the course	EMBEDDED SYSTEM				
Cours	se Code: UE-EE /UZA	Semester: /th				
Dura	don: 6 months	Maximum Marks: 100				
Teach	ning Scheme	Examination Scheme				
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks			
Credi	t Points: 3	Attendance: (05 Marks			
		End Semester Exam: 7	'0 Marks			
Objec	xtive:					
1.	To understand fundamental concepts of desig	in principles of embed	ded system.			
2.	To understand the role of firmware, operating	systems in correlation	with hardware	systems.		
Pre-R	equisite					
1.	Programming for problem solving (ES-CS 201)					
2.	Micro processor & Micro controller (PC-EE 602)					
Unit	Content		Hrs	Marks		
	Introduction to Embedded Systems: Definit	tion of Embedded				
	System, Embedded Systems Vs General Compu	uting Systems,				
	History of Embedded Systems, Classification,	, Major Application	05			
1	Areas, Purpose of Embedded Systems, Charact	teristics and Quality				
	Attributes of Embedded Systems.					
	Typical Embedded System: Core of the E	Embedded System:				
2	General Purpose and Domain Specific Process	sors, ASICs, PLDs,				
	Commercial Off-The-Shelf Components (COT	S), Memory: ROM,	07			
	RAM. Memory according to the type of 1	Interface. Memory				
	Interfacing techniques, Memory Shadowing, M	lemory selection for				
	Embedded Systems, Sensors and Actuator	rs. Communication				
	Interface: Onboard and External Communication	on Interfaces.				
3	Advanced Embedded Microcontrollers: PIC	C Microcontrollers:				
_	Overview and features: PIC 16C6X/7X - File	e Selection Register				
	(FSR), PIC Reset Actions, PIC Oscillator conn	ections. PIC Memory				
	Organization, PIC 16C6X/7X instructions, Add	dressing Modes. I/O				
	Ports Interrupts in PIC 16C61/71 Timers	PIC 16F8XX Flash				
	Microcontroller - Introduction Pin diagram	Registers Memory				
	organization Interrupts I/O Ports Timers	registers, memory	12			
	Introduction to AVR microcontroller: Intr	oduction to AVR				
	(ATmega 328n-pu) microcontroller pin lay	vout architecture				
	program memory Data Direction register Por	t Registers (PORTy)				
	PWM registers (8-bit) ADC registers	t Registers (FORTX),				
	Introduction to ARM microcontroller: Ar	chitecture of ARM				
	Embedded microcontroller APM instruction of					
4	Embedded Firmware: Reset Circuit Brown-ou	t Protection Circuit				
-	Oscillator Unit Real Time Clock Watchdo	or Timer Embedded	06			
	Firmware Design Approaches and Developmen	t I anguages	00			
1			10			
2 3 4	Typical Embedded System: Core of the E General Purpose and Domain Specific Process Commercial Off-The-Shelf Components (COT RAM, Memory according to the type of I Interfacing techniques, Memory Shadowing, M Embedded Systems, Sensors and Actuator Interface: Onboard and External Communication Advanced Embedded Microcontrollers: PIC Overview and features; PIC 16C6X/7X - File (FSR), PIC Reset Actions, PIC 0scillator commo Organization, PIC 16C6X/7X instructions, Add Ports, Interrupts in PIC 16C61/71, Timers. Microcontroller - Introduction, Pin diagram, organization, Interrupts, I/O Ports, Timers. Introduction to AVR microcontroller: Intro (ATmega 328p-pu) microcontroller, pin lay program memory, Data Direction register, Port PWM registers (8-bit), ADC registers. Introduction to ARM microcontroller: Ard Embedded Firmware: Reset Circuit, Brown-ou Oscillator Unit, Real Time Clock, Watchdo Firmware Design Approaches and Developmen	Embedded System: sors, ASICs, PLDs, S), Memory: ROM, Interface, Memory femory selection for rs, Communication on Interfaces. C Microcontrollers: e Selection Register fections, PIC Memory dressing Modes, I/O PIC 16F8XX Flash Registers, Memory roduction to AVR yout, architecture, t Registers (PORTx), chitecture of ARM ets. t Protection Circuit, og Timer, Embedded at Languages.	07 12 06			

Basics, Types of Operating Systems, Tasks, Process and Threads,	
Multiprocessing and Multitasking, Task Scheduling, Task	
Synchronization: Task Communication/Synchronization Issues,	
Task Synchronization Techniques, Device Drivers, How to Choose	
an RTOS.	

Text book:

1. Introduction to Embedded Systems, Shibu K.V, Mc Graw Hill. 2017

Reference books:

- 1. Embedded Systems Architecture, Programming and design, Raj Kamal, McGraw Hill Education, 2017
- 2. Embedded System Design: A unified Hardware/ Software introduction, Tony Givargis and Frank Vahid, Wiley 2006
- 3. Design with PIC Microcontrollers, J. B. Peatman, Pearson India, 2008
- 4. Microcontrollers (Theory and Applications) A. V. Deshmukh, TMH Education Private Limited, 2017
- 5. Programming and Customizing the AVR Microcontroller, Dhananjay Gadre, McGraw Hill Education, 2014.

Course Outcome:

After completion of this course, the students will be able to

CO1: discuss the definition, purpose, application, classification, quality characteristics and attributes of Embedded Systems

CO2: explain the internal structure of the Embedded system.

CO3: interface IO devices and other peripherals with micro controllers in Embedded systems.

CO4: write programs for Micro controllers in Embedded systems along with application of the concept of Embedded firmware in design of Embedded systems.

CO5: design RTOS based Embedded systems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	3	-	2	-	-	-	-
CO2	1	1	-	1	2	2	1	-	-	-	-	-
CO3	2	3	1	-	3	1	-	-	-	-	1	-
CO4	2	2	-	1	3	1	1	-	-	-	-	-
CO5	2	2	1	1	2	1	-	1	-	-	1	-

Name	e of the course	DIGITAL IMAGE PR	OCESSING			
Cours	se Code: OE-EE 702B	Semester: 7th				
Dura	tion: 6 months	Maximum Marks: 100				
Teach	ing Scheme	Examination Scheme				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks			
Credi	t Points: 3	Attendance: (<u>05 Marks</u>			
		End Semester Exam: /	0 Marks			
Ohie	tive					
1	To understand fundamentals and mathematic	al transforms necessary	for image proc	essing		
2.	To understand the image enhancement technic	alles	Tor image proc	coonig.		
3	To understand the image restoration procedur	res				
4.	To understand the image compression proceed	dures.				
Pre-R	equisite					
1.	Digital Signal Processing (OE-EE 601A)					
Unit	Content		Hrs	Marks		
	Introduction: Fundamental Steps in Digita	l Image Processing,				
	Components of an Image Processing Sys	tem, Sampling and				
	Quantization, Representing Digital Images (I	Data structure), Some	08			
1	Basic Relationships Between Pixels- Neighbo	ors and Connectivity of				
	pixels in image, Applications of Image I	Processing: Medical				
	imaging, Robot vision, Character recognition,	Remote Sensing.				
	Image Enhancement In The Spatial Domai	n: Some Basic Gray				
2	Level Transformations, Histogram Processing	g, Enhancement Using				
	Arithmetic/Logic Operations, Basics of Spatia	al Filtering, Smoothing	08			
	Spatial Filters, Sharpening Spatial Filters,	Combining Spatial				
	Enhancement Methods.					
	Image Enhancement In Frequency Domain:	Introduction, Fourier				
3	Transform, Discrete Fourier Transform (DFT), properties of DFT,	08			
	Discrete Cosine Transform (DCT), Image	filtering in frequency				
	domain.					
4	Image Segmentation: Introduction, Detection	on of isolated points,	08			
	line detection, Edge detection, Edge lin	nking, Region based				
	segmentation- Region growing, split and me	erge technique, local				
	processing, regional processing, Hough tran	nsform, Segmentation				
	using Threshold.					
	Image Compression: Introduction, coding Re	dundancy, Inter-pixel				
_	redundancy, image compression model,	Lossy and Lossless	08			
5	compression, Huffman Coding, Arithmetic C	oding, LZW coding,				
	Transform Coding, Sub-image size selection					
	implementation using FFT, Run length coding	5.				

Text book:

- 1. Digital Image Processing, R.C Gonzalez and R. Woods, Pearson publication, 2017
- 2. Digital Image Processing, Anil K. Jain, Prentice-Hall, India, 1988.

Reference books:

- 1. Digital Image Processing, W.K. Pratt , John Wiley & Sons, 1991.
- Digital Image Processing and Analysis, B. Chanda & D. Dutta Majumder Prentice-Hall India, 2011
- 3. Image Processing- Theory, Algorithms & Architecture, M. A. Sid-Ahmed, McGraw-Hill, 1994.

Course Outcome:

Students are able to

CO1: understand the need for image transforms different types of image transforms and their properties.

CO2: develop any image processing application and learn different techniques employed for the enhancement of images.

CO3: learn different causes for image degradation and overview of image restoration techniques

CO4: Understand the need for image compression and to learn the spatial and frequency domain techniques of image compression

CO5:. learn different feature extraction techniques for image analysis and recognition

	Digital Image Processing											
CO'S		PO'S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	3	3	_	3	3	3	-	3	-
CO2	2	2	3	3	2	3	3	2	2	-	2	3
CO3	3	2	3	3	2	3	-	-	2	3	-	3
CO4	_	_	3	3	2	_	2	3	1	3	3	2
CO5	2	1	3	_	3	2	2	2	-	3	2	-
Average	2.00	1.50	3.00	3.00	2.40	2.67 189	2.50	2.50	2.00	3.00	2.50	2.67

Name	e of the course	COMPUTER NETWORK				
Cours	se Code: OE-EE 702C	Semester: 7th				
Durat	tion: 6 months	Maximum Marks: 100				
Teach	ning Scheme	Examination Scheme				
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks			
Credi	t Points: 3	Attendance: 05 Marks				
		End Semester Exam: 7	'0 Marks			
Objec	ztive:					
1.	To understand the fundamental concepts of da	ata communication and	computer netv	vorking.		
2.	To understand different layers of OSI, TCP/IP n	model in networking.				
Pre-R	equisite					
1.	Data Structure and Algorithm (OE-EE 501A))				
2.	Operating System					
Unit	Content		Hrs	Marks		
	Overview of Data Communication and Netwo	orking: Introduction,				
	Data communications: components, data repre	esentation (ASCII, ISO				
	etc.), direction of data flow (simplex, half d	uplex, full duplex);	06			
1	network criteria, physical structure (type of co	nnection, topology),				
	categories of network (LAN, MAN, WAN): In	ternet: brief history.				
	Protocols and standards: Reference models: O	SI reference model				
	TCP/IP reference model their comparative stu	dv				
	Physical Level: Overview of data (analog & d	ligital), signal (analog				
2	& digital) transmission (analog & digital) &	transmission media	04			
-	(guided & unguided): Circuit Switching: tit	me division & space	01			
	division switch TDM bus: Telephone Network	k				
	Data link Layer: Types of errors framing	character and bit				
3	stuffing) error detection & correction meth	hods: Flow control:				
5	Protocols: Stop & wait ARO Go-Back-N AR	20 Selective repeat				
	APO HDLC	XQ, Selective Tepeat	10			
	Madium Access sub layer:		10			
	Doint to Doint Protocol LCD NCD Tokon	Ding: Deconvotion				
	Politica Multiple access gratesals: Dure ALO	LIA Slatted ALOUA				
	CSMA CSMA (CD CSMA (CA Traditional Et	HA, SIOILED ALOHA,				
	CSMA, CSMA/CD, CSMA/CA Traditional Et	thernet, fast Ethernet				
4	(in brief).	Demosterne Halter				
4	Network layer: Internetworking & devices	: Repeaters, Hubs,				
	Bridges, Switches, Router, Gateway; Address	sing : IP addressing,	12			
	sub netting; Routing : techniques, static vs.	. dynamic routing ,	12			
	Unicast Routing Protocols: RIP, OSPF, BGP; O	Other Protocols: ARP,				
	IP, ICMP, IPV6.					
	Transport layer:					
	Process to Process delivery; UDP; TCP; Cong	gestion Control: Open				
	Loop, Closed Loop choke packets; Quality of	service: techniques to				
	improve QoS: Leaky bucket algorithm, Token	bucket algorithm				

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

5	Application Layer: Introduction to DNS, SMTP, SNMP, FTP, HTTP & WWW; Security: Cryptography (Public, Private Key based), Digital Signature, Firewalls. Modern topics: ISDN services & ATM, DSL technology, Cable Modem:	08	
	Architecture and operation in brief. Wireless LAN: IEEE 802.11, Introduction to blue-tooth.:		

Text book:

- 1. Data Communications and Networking , A. Forouzan , TMH, 2004
- 2. Computer Networks, A. S. Tanenbaum, Pearson Education, 2003.
- 3. Data and Computer Communications (5th Ed.), W. Stallings, Pearson Education, 2017.

Reference books:

- 1. Communication Networks, Leon, Garica, Widjaja, McGraw Hill, 2017.
- 2. High performance Communication Networks, Walrand, Elsvier India, 2004.
- 3. Internetworking with TCP/IP, vol. 1, 2, 3, Comer, Pearson Education, 2000.

Course Outcome:

CO1: Students will be able to describe the components of data communication system and the purpose of layered architecture.

CO2: Students will be able to explain and illustrate the application of each layer of OSI and TCP/IP reference model

CO3: Students will be able to explain different protocols.

CO4: Students will be able to assess the functions of different layers.

	Computer Networks											
CO'S						PC)'S					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	-	3	-	2	2	3	-	-	-	2	2
CO2	3	3	1	2	1	2	3	3	-	2	2	1
CO3	2	3	-	-	3	1	2	3	-	-	2	2
CO4	2	2	3	2	-	2	2	2	3	2	-	-

Department of Electrical Engineering

Avg	2.50	2.67	2.33	2.00	2.00	1.75	2.50	2.67	3.00	2.00	2.00	1.67

N	6.4					
Name	of the course	PRINCIPLE OF MANAGE	MEENT			
Cours	e Code: HM-EE /01	Semester: /m				
Durat	ion: 6 months	Maximum Marks: 100				
Teach	ing Scheme	Examination Scheme				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutor	al: 0 hr/week	Assignment & Quiz: 10	Marks			
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks			
Credit	Points: 3	End Semester Exam: 7	0 Marks			
Objec	tive:					
1.	To understand basic concept and approaches t	to management.				
2.	To understand planning and decision making p	processes				
3.	To understand organizational design and struct	ture.				
4.	To understand various aspects of leadership.					
Pre-R	equisite					
1.	English (HM- HU 201)			1		
Unit	Content		Hrs	Marks		
1	Concept & approaches to management: Me	eaning & Definition	8			
	of the term Management, Management as a	Science or an Art,				
	Management as a Profession, Management as	a Process, Difference				
	between Management & Administration; Lev	vels of Management,				
	Roles of a Manager, Quality of a good Mana	iger, Significance of				
	Management, Limitations of Management, Bu	usiness Environment				
	and its interaction with Management.					
	Approaches to Management - Classical, Neo-c	classical and Modern				
	Contributors to Management Thought - Ta	ylor and Scientific				
	Theory, Fayol's and Administrative Theory	y, Peter Drucker and				
	Management Thought. Various Approaches t	to Management (i.e.				
	Schools of Management Thought) Indian Mana	agement Thought				
2	Planning & decision making: Planning: M	Ieaning, Definition,	8			
	Process, Types, Principles, Significance & Lin	mitations of Planning;				
	Strategic Planning - Meaning & Process, MB	O - Meaning, Process				
	and Requirements for Implementation, P	Planning Premises -				
	Meaning & Types, Forecasting - Meaning & T	echniques.				
	Decision Making - Meaning, Types, Proce	ess, Significance &				
	Limitations					
3	Organization design & Structure: Organiz	zation - Meaning,	8			
	Process, Principles, Organization Structure	- Determinants and				
	Forms: Line, Functional, Line & Staff, P	Project, Matrix and				
	Committees; Formal and Informal Organizatio	on; Departmentation -				
	Meaning and Bases; Span of Control - Me	aning and Factors				
	Influencing; Authority,					
	Responsibility and Accountability; Delegation	n - Meaning, Process;				
	Principles; Centralization and Decentralization	n - Meaning; Degree				
	ot Decentralization; Difference between D	elegation and				
	Decentralization.					

4	Directing: Motivation - Meaning , Definition, Significance &	8	
	Limitations; Financial and non-financial incentives of Motivation		
	Leadership - Meaning, Definition, Significance of Leadership,		
	Leadership styles Type, Process and Barriers of Communication,		
	Strategies to overcome the Barriers.		
5	Customer Management - Market Planning & Research, Marketing	8	
	Mix, Advertising & Brand Management.		
	Operations & Technology Management - Production &		
	Operations Management, Logistics & Supply Chain Management,		
	TQM, Kaizen & Six Sigma, MIS.		

Text books:

- 1. Essentials of Management. H. Koontz and H. Weihrich , 7th Edition, Tata McGraw Hill
- 2. Principles of Management, Premvir Kapoor, Khanna Publishing House, 2019
- 3. Principles of Management Text and Cases, Dipak Kumar Bhattacharyya. Pearson Education India, 2011.

Reference books:

- 1. Management-Text & Cases, V.S.P Rao & Hari V. Krishna, Excel Books, 2005
- 2. Principles of Management, T. Ramaswami, Himalaya Publishing House, 2014
- 3. Management of Technology and Operations, R. Ray Gehani, Wiley, 1998

Course Outcome: After completion of this course, the learners will be able to
COURSE OUTCOMES (COg)

CODE	DESCRIPTION
HMEE 701.CO 1	Explain the concepts and approaches of management
HMEE 701.CO 2	Demonstrate the roles, skills and functions of management and apply different methods of Customer, Operation and Technology management.
HMEE 701.CO 3	Diagnose and solve organizational problems and acquire skills of good leader in an organization.
HMEE 701.CO 4	Identify the complexities associated with management of human resources in the organizations and integrate the learning in handling these complexities.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	-	-	1	-	-	-	2	2	3	3	2
CO2	-	-	-	-	-	1	-	2	3	3	3	2
CO3	-	-	-	2	-	1	-	2	3	2	3	2
CO4	-	-	-	1	-	1	-	2	3	1	3	2
Average	-	-	-	1.3	-	1	-	2	2.75	2.25	3	2

Name	of the course	ELECTRIC DRIVE LABORATORY					
Course	e Code: PC-EE 791	Semester: 7 th					
Durati	ion: 6 months	Maximum marks:100					
Teach	ing Scheme	Examination scheme:					
Theor	y: 0 hr/week	Continuous Internal Assessment:40					
Tutori	al: 0 hr/week	External Assessment: 60					
Practio	cal: 2 hrs/week						
Credit	Points:1						
	Laboratory Exp	periments:					
1.	Study of speed control of Thysistor controlled	DC Drive.					
2.	Study of speed control of Chopper fed DC Dri	ve					
3.	Study of speed control of single phase motor u	using TRIAC.					
4.	Study of PWM Inverter fed 3 phase Induction	Motor control using software.					
5.	Study of VSI / CSI fed Induction motor Drive	using software.					
6.	Study of V/f control of 3phase Induction moto	or drive.					
7.	Study of permanent magnet synchronous mot	or drive fed by PWM Inverter using Software.					
8.	Study of Regenerative / Dynamic braking ope	ration for DC Motor - Study using software.					
9.	Study of Regenerative / Dynamic braking ope	ration of AC motor - study using software.					
10.	Study of PC/PLC based AC/DC motor control	operation.					

Course outcome: After completion of this course, the learners will be able to

- 1. Identify appropriate equipment and instruments for the experiment.
- 2. Choose the instrument for application to the experiment.
- 3. Construct circuits with appropriate instruments and safety precautions.
- 4. Apply different methods of control of Electric Drive in the laboratory.
- 5. Analyse experimental data obtained in the laboratory.

CO-PO Mapping:

Digital Image Processing

Department of Electrical Engineering

CO'S		PO'S													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	1	3	3	3	_	3	3	3	-	3	_			
CO2	2	2	3	3	2	3	3	2	2	-	2	3			
CO3	3	2	3	3	2	3	_	-	2	3	-	3			
CO4	-	-	3	3	2	-	2	3	1	3	3	2			
CO5	2	1	3	_	3	2	2	2	-	3	2	_			
Average	2.00	1.50	3.00	3.00	2.40	2.67	2.50	2.50	2.00	3.00	2.50	2.67			

8th Semester

Semester-VIII

Name of the course	UTILIZATION OF ELECTR	RIC POWER							
Course Code: PC-EE 801	Semester: 8 th								
Duration: 6 months	Maximum Marks: 100	Maximum Marks: 100							
Teaching Scheme	Examination Scheme								
Theory: 3 hrs/week	Mid Semester Exam: 15	5 Marks							
Tutorial: 0 hr/week	Assignment & Quiz: 10	Marks							
Practical: 0 hrs/week	Attendance: 05	5 Marks							
Credit Points: 3	End Semester Exam: 70	End Semester Exam: 70 Marks							
Objective:									
1. To understand basic principle of illumina	tion and good lighting pr	ractices							
2. To understand the method of Electric heat	ing, Welding and Electr	olytic process	es.						
3. To understand the concepts of Electrica	l traction systems.								
4. To solve numerical problems on the topics s	tudied.								
Pre-Requisite									
1. Electric Machine (PC-EE-401, PC-EE-501)									
2. Control System (PC-EE-503)									
3. Power Electronics (PC-EE-504)									
Unit Content		Hrs	Marks						

1	Electric Traction : Requirement of an ideal traction system, Supply system for electric traction, Train movement (speed time curve, simplified speed time curve, average speed and schedule speed), Mechanism of train movement (energy consumption, tractive effort during acceleration, tractive effort on a gradient, tractive effort for resistance, power & energy output for the driving axles, factors affecting specific energy consumption, coefficient of adhesion). Electric traction motor & their control: Parallel and series operation of Series and Shunt motor with equal and unequal wheel diameter, effect of sudden change of in supply voltage, Temporary interruption of supply, Tractive effort and horse power. Use of AC series motor and Induction motor for traction. Traction motor control: DC series motor control, Multiple unit control, Braking of electric motors, Electrolysis by current through earth, current collection in traction system, Power electronic controllers in traction system.	10
2	Electric Lighting: Definition of terms; laws of illumination; Luminaries; Lighting requirements; Illumination levels; lamp selection and maintenance; Lighting schemes, calculations & design - Interior lighting - industrial, Factory, residential lighting; Exterior lighting - Flood, street lighting, lighting for displays and signaling - neon signs, LED-LCD displays beacons and lighting for surveillance; Energy Conservation codes for lighting; lighting controls - daylight sensors and occupancy sensors; controller design.	8
3	Electric Heating : Advantages of electrical heating, Heating methods, Resistance heating - direct and indirect resistance heating, electric ovens, their temperature range, properties of resistance heating elements, domestic water heaters and other heating	08
	appliances and thermostat control circuit ,Induction heating; principle of core type and coreless induction furnace , Electric arc heating, direct and indirect arc heating, construction, working and applications of arc furnace, Dielectric heating, applications in various industrial fields, Infra-red heating and its applications, Microwave heating, Simple design problems of resistance heating element.	
4	Electric Welding: Advantages of electric welding, Welding methods, Principles of resistance welding, types -spot, projection seam and butt, welding and welding equipment used, Principle of arc production, electric arc welding, characteristics of arc, carbon arc, metal arc, hydrogen arc welding and their applications, Power supply required ,Advantages of using coated electrodes, comparison between AC and DC arc welding, welding control circuits, welding of aluminum and copper, Introduction to TIG, MIG welding	08
5	Electrolytic processes: Need of electro-deposition, Laws of electrolysis, process of electro-deposition - clearing, operation, deposition of metals, polishing, buffing, Equipment and accessories for electroplating, Factors affecting electro-deposition, Principle of galvanizing and its applications, Principle of anodising and its applications, Electroplating on non-conducting materials , Manufacture of chemicals by electrolytic process and electrolysis process.	06

Text books:

- 1. Generation Distribution and Utilization of Electrical Energy, C.L. Wadhawa, New Age International Publishers, 2015
- 2. Art and Science of Utilization of Electrical Energy, H. Partab, Dhanpat Rai & co, 2017
- 3. Utilisation of Electric Energy, E.Openahaw Taylor, Universities press, 1981

Reference books:

- 1. Generation and Utilization of Electrical Energy by S. Sivanagaruju, Pearson, 2010.
- 2. Utilization of Electrical Energy by J. B. Gupta, Rajeev Manglik, Rohit Manglik, Kataria Publications, 2012.

Course Outcome:

Course outcome codes	Statement
PC-EE 801.1	Implement the knowledge of different traction methods used in electrical engineering and solve practical related complex engineering problems
PC-EE 801.2	Design projects in team using the concept of illumination engineering
PC-EE 801.3	Carry out research work in future and implement them for solving professional engineering problems
PC-EE 801.4	Solve problems in the areas of electric heating and electrolysis

COs	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
PC-EE	3	3	3	2	3	2	2	-	2	-	2	2
801.1												
PC-EE	2	3	2	3	3	2	3	-	3	3	3	2
801.2												
PC-EE	3	3	2	3	3	2	3	-	3	2	3	2
801.3												
PC-EE	3	3	1	1	2	2	2	-	2	-	2	3
801.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	LINE COMMUTATED AND ACTIVE PWM						
Course	a Codo: DE EE 801 A	Semester: 8 th						
Durati	ion: 6 months	Maximum Marke: 100						
Durat								
Teach	ing Scheme	Examination Scheme						
Theor	w 3 hrs/week	Mid Semester Exam: 15 Marks						
Tutori	jel: 0 hr/week	Assignment & Ouiz: 10) Marks					
Practi	cal: 0 hrs/week	Attendance:	5 Marks					
Credit	Points: 3	Find Semester Exam: 7	0 Marks					
Crean	.101113. 5	End Semester Exam. 7	0 Widi KS					
Objec	tive:							
1.	To understand the principle of operation of c	lifferent converter circuit	ts and filters					
2.	To understand the method of steady state anal	lysis of converters.						
3.	To understand the different control techniques	s of the converters.						
4.	To understand the application of different con	verters						
Pre-R	equisite							
1.	Control System (PC-EE-503)							
2.	Power Electronics (PC-EE-504)							
Unit	Content		Hrs	Marks				
1	Diode rectifiers with passive filtering:							
	Half-wave diode rectifier with RL and RC loa	ads; 1-phase full-wave						
	diode rectifier with L, C and LC filter; 3-phas	se diode rectifier with	5					
	L, C and LC filter; continuous and discontinu	ous conduction, input						
	current wave shape, effect of source induc	ctance; commutation						
	overlap.							
2	Thyristor rectifiers with passive filtering:							
	Half-wave thyristor rectifier with RL and	RC loads; 1-phase	_					
	thyristor rectifier with L and LC filter; 3- ph	ase thyristor rectifier	5					
	with L and LC filter; continuous and discor	ntinuous conduction,						
2	input current waveshape							
3	Multi-Pulse converter:	nation of Culture						
	Review of transformer phase shifting, gene	ration of 6-phase ac	C					
	voltage from 3-phase ac, 6-pulse converter a	nd 12-pulse converters	0					
	with inductive loads, steady state analysis, col	minutation overlap,						
	notches during commutation.							
4	Single-phase ac-dc single-switch boost conv	erter.	6					
	Review of dc-dc boost converter power circ	uit of single-switch ac-	0					
	dc converter steady state analysis unity po	wer factor operation						
	closed-loop control structure	ver ruetor operation,						
5	Ac-dc bidirectional boost converter:		6					
-	Review of 1-phase inverter and 3-phase inver	ter, power circuits of 1-						
	phase and 3-phase ac-dc boost converter, s	steady state analysis,						
	operation at leading, lagging and unity powe	r factors. Rectification						
	and regenerating modes. Phasor diagrams,	closed-loop control						
	structure.	Ĩ						
6	Isolated single-phase ac-dc fly back converted	er:						
	Dc-dc fly back converter, output voltage as a	a function of duty ratio	08					
	and transformer turns ratio Power circuit	t of ac-dc fly back						

converter, steady state analysis, unity power factor operation, closed	
loop control structure	

Text books:

- 1. Power Electronics: Converters, Applications and Design, N. Mohan and T. M. Undeland, John Wiley & Sons, 2007.
- 2. Power Electronics: Essentials and Applications, L. Umanand, Wiley India, 2009
- 3. Principles of Power Electronics, J.G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley, 1991.

Reference books:

1. Fundamentals of Power Electronics, R. W. Erickson and D. Maksimovic, Springer Science & Business Media, 2001.

Course Outcome: After completion of this course, the learners will be able to

- 1. Explain the principle of operation of different converters.
- 2. Suggest appropriate scheme for control of different converters.
- 3. Analyze converters for different applications.
- 4. Point out the application of different filters.

COs	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
PE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801A.1												
PE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801A.2												
PE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801A.3												
PE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801A.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	POWER SYSTEM DYNAMICS AND CONTROL					
Cours	e Code: PE-EE 801B	Semester: 8 th					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme					
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutor	al: 0 hr/week	Assignment & Quiz: 10	Marks				
Practi	cal: 0 hrs/week	Attendance: 0)5 Marks				
Credit	Points: 3	End Semester Exam: 7	0 Marks				
Objec	tive:						
1.	To understand power stability problems and	the basic concepts of mo	deling and anal	ysis of			
	dynamical systems.	_	-	-			
2.	To understand the Modeling of power system	components - generators	s, transmission l	ines,			
	excitation and prime mover controllers.						
3.	To understand the Stability of single machine	and multi-machine syste	ems using digita	l simulation			
	and small-signal analysis techniques.						
4.	To understand the impact of stability problem	s on power system plann	ing, and operation	ion.			
Pre-R	equisite						
1.	Power System (PC-EE-502, PC-EE-601)						
2.	Control System (PC-EE-503)						
3.	Electric Machine(PC-EE-401, PC-EE501)						
Unit	Content		Hrs	Marks			
1	Introduction to Power System Operations: In	ntroduction to power	2				
	system stability. Power System Operations a	nd Control. Stability	3				
	problems in Power System. Impact on Power	System Operations and					
	control.						
2	Analysis of Linear Dynamical System and N	umerical Methods :					
	Analysis of dynamical System, Concept of Ed	quilibrium, Small and	F				
	Large Disturbance Stability. Modal Analys	is of Linear System.	3				
	Analysis using Numerical Integration Technic	jues. Issues in					
2	Modeling: Slow and Fast Transients, Still Sys	stem.					
5	Controllers:	socialeu					
	Modeling of synchronous machine: Physical	Characteristics Rotor					
	position dependent model D-O Transfor	Characteristics. Rotor					
	\mathbf{U}						
	Standard Parameters Steady State Anal	rmation. Model with vsis of Synchronous					
	Standard Parameters. Steady State Anal Machine Short Circuit Transient Analysis	rmation. Model with ysis of Synchronous	10				
	Standard Parameters. Steady State Anal Machine. Short Circuit Transient Analysis Machine Synchronization of Synchronous M	rmation. Model with ysis of Synchronous s of a Synchronous laching to an Infinite	10				
	Standard Parameters. Steady State Anal Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus Modeling of Excitation and Prime Move	rmation. Model with ysis of Synchronous s of a Synchronous fachine to an Infinite r Systems Physical	10				
	Standard Parameters. Steady State Anal Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Move Characteristics and Models. Excitation System	rmation. Model with ysis of Synchronous s of a Synchronous Iachine to an Infinite r Systems. Physical p Control Automatic	10				
	Standard Parameters. Steady State Anal Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Move Characteristics and Models. Excitation Syster Voltage Regulator Prime Mover Control	rmation. Model with ysis of Synchronous s of a Synchronous fachine to an Infinite r Systems. Physical n Control. Automatic of Systems Speed	10				
	Standard Parameters. Steady State Anal Machine. Short Circuit Transient Analysis Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Move Characteristics and Models. Excitation Syster Voltage Regulator. Prime Mover Contro Governors.	rmation. Model with ysis of Synchronous s of a Synchronous Iachine to an Infinite r Systems. Physical n Control. Automatic ol Systems. Speed	10				
4	Standard Parameters. Steady State Anal Machine. Short Circuit Transient Analysi Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Move Characteristics and Models. Excitation Syster Voltage Regulator. Prime Mover Contro Governors. Modeling of other Power System Component	rmation. Model with ysis of Synchronous s of a Synchronous Iachine to an Infinite r Systems. Physical n Control. Automatic ol Systems. Speed	10				
4	Standard Parameters. Steady State Anal Machine. Short Circuit Transient Analysi Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Move Characteristics and Models. Excitation Syster Voltage Regulator. Prime Mover Contro Governors. Modeling of other Power System Component Modeling of Transmission Lines and Loads	rmation. Model with ysis of Synchronous s of a Synchronous fachine to an Infinite r Systems. Physical n Control. Automatic ol Systems. Speed tts: s. Transmission Line	10				
4	Standard Parameters. Steady State Anal Machine. Short Circuit Transient Analysi Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Move Characteristics and Models. Excitation Syster Voltage Regulator. Prime Mover Contro Governors. Modeling of other Power System Component Modeling of Transmission Lines and Loads Physical Characteristics. Transmission Line M	rmation. Model with ysis of Synchronous s of a Synchronous Iachine to an Infinite r Systems. Physical m Control. Automatic ol Systems. Speed tts: s. Transmission Line Iodeling. Load Models	10				
4	 Standard Parameters. Steady State Anal Machine. Short Circuit Transient Analysi Machine. Synchronization of Synchronous M Bus. Modeling of Excitation and Prime Move Characteristics and Models. Excitation Syster Voltage Regulator. Prime Mover Contro Governors. Modeling of other Power System Componen Modeling of Transmission Lines and Loads Physical Characteristics. Transmission Line M - induction machine model. Frequency and Voltage 	rmation. Model with ysis of Synchronous s of a Synchronous fachine to an Infinite r Systems. Physical m Control. Automatic ol Systems. Speed ts: s. Transmission Line fodeling. Load Models oltage	10 08				

	controllers, Wind Energy Systems.		
5	Stability Analysis:		
	Angular stability analysis in Single Machine Infinite Bus System.		
	Angular Stability in multi-machine systems - Intra-plant, Local and		
	Inter-area modes. Frequency Stability: Centre of Inertia Motion.		
	Load Sharing: Governor droop. Single Machine Load Bus System:	10	
	Voltage Stability. Introduction to Tensional Oscillations and the		
	SSR phenomenon. Stability Analysis Tools: Transient Stability		
	Programs, Small Signal Analysis Programs		
6	Enhancing System Stability:		
	Planning Measures. Stabilizing Controllers (Power System	4	
	Stabilizers). Operational Measures- Preventive Control. Emergency		
	Control.		

Text books:

- 1. Power System Dynamics, Stability and Control, K.R. Padiyar. B. S. Publications, 2002.
- 2. Power System Stability and Control, Prabha Kundur. McGraw Hill, 2006.
- 3. Power System Dynamics and Stability, P. W. Sauer and M. A. Pai . Pearson, 1997.

Reference books:

- 1. The Essentials of Power System Dynamics and Control, Hemanshu Roy Pota, Springer, 2018
- 2. Power System Dynamics and Control, H.G. Kwanty and K.M.Miller, Birkhauser. 2016

Course Outcome: After completion of this course, the learners will be able to

- 1. Explain the model of power system components
- 2. Select the appropriate model for required analysis.
- 3. Analyze the performance of the system with small signal analysis.
- 4. Evaluate the stability of the single and multi machine systems. .

COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012
PE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801B.1												
PE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801B.2												
PE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801B.3												
PE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801B.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	ADVANCED ELECTRIC D	RIVE			
Cours	e Code: PE-EE 801C	Semester: 8 th				
Durat	ion: 6 months	Maximum Marks: 100				
Durut						
Teach	ing Scheme	Examination Scheme				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	15 Marks			
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks			
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks			
Credi	t Points: 3	End Semester Exam: 7	0 Marks			
Objec	tive:					
1.	To understand basic principle of operation of	f Power Converters used	for AC drives			
2.	To understand the method for modeling and c	control of Induction moto	or and Synchron	ous motor.		
3.	To understand the method of control of Perm	anent magnet motor drive	e, Switched relu	ictance motor		
	drive.					
4.	To understand the principle of DSP based mo	tion control.				
Pre-R	equisite					
1.	Electric Machine (PC-EE-401, PC-EE-501)					
2.	Control System (PC-EE-503)					
3.	Power Electronics (PC-EE-504)			1		
Unit	Content		Hrs	Marks		
1	Power Converters for AC drives: PWM	control of inverter,	8			
	selected harmonic elimination, space vector	r modulation, current				
	control of VSI, three level inverter, Different	topologies, SVM for 3				
	level inverter, Diode rectifier with boost chop	oper, PWM converter as				
	line side rectifier, current fed inverters w	ith self-commutated				
	devices. Control of CSI, H bridge as a 4-Q dr	ive.	-			
2	Induction motor drives: Different transform	hations and reference	8			
	frame theory, modeling of induction machin	es, voltage fed inverter				
	control-v/f control, vector control, dire	ct torque and flux				
2	control(DIC).		5			
3	Synchronous motor drives: Modeling of sy	nchronous machines,	3			
	open loop V/I control, vector control, direct	torque control, CSI led				
4	Permanent magnet motor drives: Introdu	ction to various PM	5			
4	motors BLDC and PMSM drive configuration	on comparison block	5			
	diagrams. Speed and torque control in BLDC	and PMSM				
5	Switched reluctance motor drives Evo	5				
5	reluctance motors, various topologies for SR	-				
	Closed loop speed and torque control of SRM	[.				
6	DSP based motion control: Use of DSP	s in motion control.	5			
-	various DSPs available, realization of some	basic blocks in DSP for	-			
1						
	implementation of DSP based motion control					

Text books:

- 1. Modern Power Electronics and AC Drives, B. K. Bose, PHI, 2005
- 2. Permanent Magnet Synchronous and Brushless DC motor Drives, R. Krishnan, CRC Press, 2009
- 3. DSP based Electromechanical Motion Control, H. A. Taliyat and S. G. Campbell, CRC Press, 2003.

Reference books:

1. Analysis of Electric Machinery and Drive Systems, P.C. Krause, O. Wasynczuk and S.D. Sudhoff, Wiley, 2013.

Course Outcome: After completion of this course, the learners will be able to

1. Explain the principle of operation of converters for AC drives & basic blocks for DSP based motion control.

- 2. Understand Induction and Synchronous motor by reference frame theory.
- 3. Analyze different control methods to control speed and torque of Induction and Synchronous Motor

4. Point out the configurations and method of speed control of Induction and Synchronous motor, BLDC, PMSM and SRM. 5. Realize basic blocks for DSP based motion control.

COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012
PE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801C.1												
PE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801C.2												
PE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801C.3												
PE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801C.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	TION AND CONT	ROL				
Cours	e Code: PE-EE 801D	Semester: 8 th					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme					
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutor	ial: 0 hr/week	Assignment & Quiz: 10) Marks				
Practi	cal: 0 hrs/week	Attendance: 0	05 Marks				
Credit	t Points: 3	End Semester Exam: 7	0 Marks				
Objec	tive:						
1.	To understand Industrial automation and control.						
2.	To understand the different control modes.						
3.	To understand advance industrial control strat	tegies.					
4.	To understand the Programmable Logic Cont	roller and distributed cor	ntrol system.				
Pre-R	equisite						
1.	Control System (PC-EEE-503)						
Unit	Content		Hrs	Marks			
1	Introduction to Industrial Automation and	Control:					
	Architecture of Industrial Automation Syste	08					
	process, Process control & automation, Servo						
	Characteristic parameter of a process: Pro-						
	potential, Process resistance, Process capacit	tance, Process lag, Self					
	regulation.	-					

Department of Electrical Engineering

	F	
2	Different control modes and Implementation: On-off control, Multistep, Time proportional, Proportional, Proportional-integral, Proportional -derivative, Proportional- integral-derivative, integral windup, bump less transfer, Inverse derivative control, controller tuning techniques and selection guideline. Implementation of PID Controllers.	08
3	Advance Industrial control strategies (Brief analysis): Feedforward control, Cascade control, Ratio control, Selective Control, Split Range Control, Adaptive control.	06
4	Actuators and final control elements: Classification of Actuators: pneumatic, hydraulic, electro- pneumatic, and stepper motor operated actuators. Pumps and motors, proportional and servo valves.	06
5	 Programmable Logic Controller: Block diagram, Classification, Basic Architecture and Functions; Input-Output Modules, power supply. PLC Programming: Relay logic and ladder logic, PLC ladder diagram realization, PLC Timer, PLC Counter, advance instructions. PLC programming examples for Industrial maintenance and control. 	06
6	Distributed Control System (DCS): Basic concept and overview of DCS, DCS System Architecture, configuration, operation and features. HMI and SCADA, OSI Communication Standard and Fieldbus.	06

Text books:

- 1. Industrial Instrumentation and Control, S. K. Singh, Tata-McGraw, 2010
- 2. Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S. Sen and A. K. Deb, Jaico Publishing House, 2012.
- 3. Process Control, K. Krishnaswamy, New Age International Publishers, 2009
- 4. Programmable Logic Controllers with Control Logix, Jon Stenerson, Delmar Cengage learning, 2009

Reference books:

- 1. Automatic Process Control, D.P. Eckman, John Wiley and sons, 1958
- 2. Process control instrumentation technology, C.D. Johnson, PHI, 2005
- 3. Instrument Engineers Handbook, B.G. Liptak, CRC Press, 2003

Course Outcome: After completion of this course, the learners will be able to

- 1. Explain the basic structure of industrial automation and control & different distributed control systems
- 2. Classify different types of control actions of controllers.
- 3. Analyze control strategies of different processes of industry.
- 4. Illustrate the construction and use of different types of actuators and control valves.

COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012
PE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801D.1												
PE-EE	2	3	2	3	3	2	3	-	3	3	3	2

Department of Electrical Engineering

801D.2												
PE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801D.3												
PE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801D.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	SOFT COMPUTING	TECHNIQUES				
Cours	e Code: OE-EE 801A	Semester: 8th					
Durat	ion: 6 months	Maximum Marks: 100					
Teach	ing Scheme	Examination Scheme	2				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks				
Tutori	ial: 0hr/week	Assignment & Quiz: 1	0 Marks				
Credit	t Points: 3	Attendance: (05 Marks				
		End Semester Exam: 7	'0 Marks				
Objec	tive:						
1.	To understand the theory of Neural network	k, Fuzzy logic and Genet	ic Algorithm.				
2.	To Introduce neural networks, Genetic Algo	rithm and Fuzzy logic fro	om an engineeri	ng			
	perspective.						
Pre-R	equisite						
1.	Programming for problem solving (ES-CS 201)					
Unit	Content		Hrs	Marks			
	Introduction: Introduction to soft computing;	introduction to fuzzy					
1	sets and fuzzy logic systems; introduction to	biological and artificial	05				
	neural network; introduction to Genetic Algor	rithm.					
2	Fuzzy sets and Fuzzy logic systems: Classica	l Sets and Fuzzy Sets					
	and Fuzzy relations: Operations on Classic	al sets, properties of					
	classical sets, Fuzzy set operations, prop	erties of fuzzy sets,					
	cardinality, operations, and properties	of fuzzy relations.					
	Membership functions: Features of members	ship functions, standard					
	forms and boundaries, different fuzzificatio	n methods. Fuzzy to					
	Crisp conversions: Lambda Cuts for fuzzy s	sets, fuzzy Relations,	12				
	Defuzzification methods. Classical Logi	c and Fuzzy Logic:					
	Classical predicate logic, Fuzzy Logic, Appr	oximate reasoning and					
	Fuzzy Implication Fuzzy Rule based System	s: Linguistic Hedges,					
	Fuzzy Rule based system - Aggregation of	f fuzzy Rules. Fuzzy					
	Inference System- Mamdani Fuzzy Models -						
	Applications of Fuzzy Logic: How Fuzzy Logic						
	Appliances, General Fuzzy Logic control						
	Diagnostic systems and Weather forecasting						
	Fuzzy Control. Convention control systems	Fuzzy logic control vs					
1	= = = , = = , = = = , = = = = = = = =						

Department of Electrical Engineering

3	Neural Network: Introduction to Neural Networks: Advent of		
	Modern Neuroscience, Classical AI and Neural Networks,		
	Biological Neurons and Artificial neural network; model of artificial		
	neuron. Learning Methods : Hebbian, competitive, Boltzman etc.,		
	Neural Network models: Perceptron, Adaline and Madaline	10	
	networks; single layer network; Back propagation and multi layer		
	networks. Competitive learning networks: Kohonen self organizing		
	networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy		
	modelling: Applications of Neural Networks: Pattern Recognition		
	and classification:		
4	Genetic Algorithms: Simple GA, crossover and mutation, Multi-		
	objective Genetic Algorithm (MOGA). Applications of Genetic	08	
	Algorithm: genetic algorithms in search and optimization, GA based		
	clustering Algorithm, Image processing and pattern Recognition.		
5	Other Soft Computing techniques: Simulated Annealing, Tabu	05	
	search, Ant colony optimization (ACO), Particle Swarm		
	Optimization (PSO).		

Text book:

- 1. Fuzzy logic with engineering applications, Timothy J. Ross, Wiley ,2011
- 2. Neural Networks Fuxxy Logic and Genetic Algorithm: Synthesis and Application, S. Rajashekharan and G.A. Vijaylakshmi Pai, PHI,2013
- 3. Principles of Soft Computing, S N Sivanandam, S.N. Deepa, Wiley , 2011.

Reference books:

- 1. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Addison Wesley, 1989.
- 2. Neuro-Fuzzy and Soft computing, Jang, Sun, Mizutani, Pearson, 1996.
- 3. Neural Networks: A Classroom Approach, Satish Kumar, McGraw Hill, 2017.
- 4. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Pearson/PHI
- 5. Introduction to Soft Computing-Neuro Fuzzy and Genetic Algorithm, Samir Roy & Udit Chakraborty, Pearson, 2013.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Explain soft computing techniques and their roles in building intelligent machines
- 2. Analyse the feasibility of application of soft computing techniques for a particular problem
- 3. Evaluate solutions by various soft computing approaches for a given problem.
- 4. Apply different soft computing techniques to solve Engineering problems.

COs	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
OE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801A.1												

Department of Electrical Engineering

JIS GROUP

OE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801A.2												
OE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801A.3												
OE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801A.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	BIOMEDICAL INSTRUMENTATION				
Cours	se Code: OE-EE 801B	Semester: 8th				
Durat	ion: 6 months	Maximum Marks: 100				
Teach	ling Scheme	Examination Scheme				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks			
Credit	t Points: 3	Attendance: (05 Marks			
]	End Semester Exam: 7	0 Marks			
Objec	tive:	_				
1.	To understand the fundamental of Medical I	Instruments				
2.	To understand Biomedical recorders, Medical I	Imaging equipments, Su	irgical, Therap	eutic		
	Instruments and Medical Laboratory equipmer	nts.				
Pre-R	equisite					
1.	Analog Electronics (PC-PC-EE-303)					
2.	Digital Electronics (PC-EE-402)					
Unit	Content		Hrs	Marks		
	Fundamentals of Medical Instruments:					
1	Fundamentals of medical instrumentation- Sou	urces of biomedical				
	signals, Generalized medical instrumentation	n block•••••				
	diagram.		08			
	Medical electrodes - ECG, EEG, EMG, Defi	brillator. Medical				
	transducers: Body temperature, Blood pressu	re, respiration rate.				
	Classification of Medical instruments based	d on application -				
2	Biomedical Recorders:					
	Electrocardiograph (ECG) machine -ECG bloc	ck diagram, Bipolar				
	and unipolar leads, Phono-cardiograph.		08			
	Electroencephalograph					
	(EEG). 10-20 electrode placement system, EE	EG readout device,				
	Electro-myograph (EMG) machine. Bio-feedb	back Instrumentation.				
3	Medical Imaging Equipments:					
	X-ray machine, CT-Scan machine, MRI Scan n	nachine, Properties of				
	ultrasound, Ultrasonic foetal monitors. Echoence	cephalography. Echo-	08			
	cardiograph. Colour Doppler ultrasound machi	ine.				
4	Surgical & Therapeutic Instruments:					
	Electro-surgery machine (cautery), Hemo-dial	lysis machine Muscle	06			
	stimulators, Defibrilator Machine	-				
5	Medical Laboratory Instruments:					
	Types of test- Blood cell, Bio chemistry, Blood	d Cell Counter, Bio	06			
	chemistry analyze, Auto analyzer, Blood gas an	nalyzer.				
		-				

Text book:

- 1. Handbook of Biomedical instrumentation, R. S. Khandpur, Tata McGraw Hill, New Delhi, 2003
- 2. Introduction to Biomedical equipment technology, Joseph J. Carr and J.M. Brown, Pearson education, New Delhi, 2000
- 3. Biomedical instrumentation measurements , Lesli P Cromwell, Fred J. Weibell, Erich A. Pfeiffer, PHI Learning, New Delhi, 2018

Reference books:

- 1. Medical instrumentation application & design, John G. Webster, Editor, John Wiley and Sons, New Delhi, 2009
- 2. Introduction to Biomedical Instrumentation, Mandeep Singh, PHI, 2010

Course Outcome:

After completion of this course, the learners will be able to

- 1. Describe the principle of medical transducers for temperature, pressure and respiration rate.
- 2. Explain the principle of operation of Biomedical recorders, Medical Imaging equipments Surgical & Therapeutic Instruments and Medical Laboratory Instruments.
- 3. Analyse different Medical laboratory equipments for different tests .
- 4. Suggest any measurement application and suggest suitable measurement methods.

COs	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
OE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801B.1												
OE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801B.2												
OE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801B.3												
OE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801B.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course I	INTRODUCTION TO MACHINE LEARNING				
Cours	e Code: OE-EE 801C S	Semester: 8th				
Durat	ion: 6 months N	Maximum Marks: 100				
Teach	ing Scheme E	Examination Scheme				
Theor	y: 3 hrs/week N	Mid Semester Exam: 1	<u>5 Marks</u>			
Tutori	al: Ohr/week A	Assignment & Quiz: 10 Marks				
Credit	t Points: 3 A	Attendance: (<u>05 Marks</u>			
	<u> </u>	End Semester Exam: /	0 Marks			
Ohiec	tive:					
1	To understand fundamental concepts of Machi	ine Learning				
2	To apply Machine Learning in real life application	ons				
Pre-R	equisite					
1.	Programming for problem solving (ES-CS 201)					
Unit	Content		Hrs	Marks		
	Basics of Machine Learning and Python: I	Review of Linear				
	Algebra, Definition of learning systems; Des	signing a learning				
	system, Goals and applications of machine learn	ning; Classification	12			
1	of learning system, Basic concepts in Machine I	Learning.				
	Python Basics - string, number, list, tuple, Dic	ctionary, functions,				
	conditional statement, Loop statements, Numpy	y, Matplotlib, simple				
	programming exercises using python.					
	Supervised Learning: Linear regression with o	one variable, Linear				
2	regression with multiple variables, Logistic	regression; Linear				
	Methods for Classification; Linear Method	ds for Regression;	07			
	Decision trees, overfitting.					
3	Support Vector Machines: Introduction, N	Maximum Margin				
	Classification, Mathematics behind N	Maximum Margin	07			
	Classification, Maximum Margin linear separate	ors, non-linear SVM,				
	Kernels for learning non-linear functions.					
4	Unsupervised Learning: Learning from u	unclassified data,	07			
	Clustering - Hierarchical Agglomerative Cl	lustering, K-means	07			
	partitional clustering, Expectation maximizat	tion (EM) for soft				
	clustering; Dimensionality reduction - Prin	ncipal Component				
	Analysis, factor Analysis, Multidimensiona	al scaling, Linear				
	Discriminant Analysis.					
5	Applications of Machine Learning: Strategies, g	guidelines for good	07			
	design, performance measurement, Reading D	Data, PreProcessing				
	Data, handwriting recognition, object detection,	, face detection.				

Text book:

- 1. Machine Learning, Dr. Rajjiv Chopra, Khanna Publishing, 2020
- 2. Introduction to Machine Learning, EthemAlpaydi, PHII, 2015
- 3. Building Machine Learning Systems with Python, Richert& Coelho, Packt publishing, 2013

Reference books:

- 1. The Elements Of Statistical Learning: Data mining, Infarence and Prediction, Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2017.
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, MIT Press 2012.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Describe the basics concepts and classification of Machine Learning .
- 2. Explain Supervised Learning concepts.
- 3. Analyse the concept of Support Vector Machine.
- 5. Survey unsupervised learning concepts and dimensionality reduction techniques.

COs	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
OE-EE	3	3	3	2	3	2	2	-	2	-	2	2
801C.1												
OE-EE	2	3	2	3	3	2	3	-	3	3	3	2
801C.2												
OE-EE	3	3	2	3	3	2	3	-	3	2	3	2
801C.3												
OE-EE	3	3	1	1	2	2	2	-	2	-	2	3
801C.4												
Average	3	3	2	2	3	2	2	-	2	1	2	2

Name	of the course	SENSORS AND TRANSDUCERS				
Cours	e Code: OE-EE 801D	Semester: 8th				
Durat	ion: 6 months	Maximum Marks: 100				
Teach	ing Scheme	Examination Scheme				
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks			
Tutori	al: 0hr/week	Assignment & Quiz: 1	0 Marks			
Credit	Points: 3	Attendance:	05 Marks			
		End Semester Exam: 7	'0 Marks			
Objec	tive:					
1.	To understand the principle of operation of 7					
2.	To understand the application of Transducer					
Pre-R	equisite					
1.	Electric Circuit Theory (PC-EEE-301)					
2.	Electromagnetic Field Theory (PC-EEE-303)					
Unit	Content		Hrs	Marks		
	Introduction:					
1	Definition, significance of measurement and	l instruments. Principle	05			
	of sensing & transduction, transducer classi	fication, Transducer				
	characteristics, emerging fields of sensor tech	nologies.				
2	Resistive transducers: Potentiometers: types.	, loading error, metal				
	and semiconductor strain gauges, types, r	esistance measuring	05			
	methods, strain gauge applications: Load and	torque measurement.				

3	Inductive transducers: Transformer type, synchros, eddy current		
	transducers, LVDT: Construction, material, input-output	08	
	characteristics.		
	Optical Sensors: LDR, Photo Diode, Stroboscope, IR Sensor.		
4	Capacitive transducers: Variable distance-parallel plate type,		
	variable area- parallel plate type, cylindrical type, differential type,		
	variable dielectric constant type, calculation of sensitivity.		
	Capacitive microphone, fluid level measurement.	10	
	Piezoelectric transducers: piezoelectric effects, Materials, natural	10	
	and synthetic types - their comparison, Charge and voltage co-		
	efficient, Force and stress sensing, displacement measurement.		
	Magnetic Transducer: Hall effect sensors, Magnetostrictive		
	transducers: principle, positive and negative magnetostriction.		
5	Thermal sensors: Resistance temperature detector (RTD):		
	principle, materials and types; Thermistor: principle, materials and	06	
	types; Thermocouple, Thermoelectric effects, laws of thermocouple,		
	thermocouple types, construction. IC temperature sensor, PTAT type		
	sensor.		
	Radiation sensors: types, characteristics and comparison.		
	Pyroelectric type.		
6	Micro-sensors and smart sensors: Construction, characteristics		
	and applications. Standards for smart sensor interface.	04	
	Recent Trends in Sensor Technologies: Introduction; Film sensors		
	(Thick film sensors, thin film sensor)		

Text book:

- 1. Transducers and Instrumentation, D.V.S. Murthy, Prentice Hall, 2008
- 2. Sensors and Transducers, D. Patranabis, Prentice Hall India, 2003
- 3. Measurement Systems Application and Design, E.O. Doebelin, McGraw-Hill, 2008

Reference books:

- 1. Instrument Transducers An Introduction to their Performance and Design", H.K.P. Neubert, Oxford University Press, 1999.
- 2. Measurement Systems and Sensors, WaldemarNawrocki Artech House, 2016.
- 3. Semiconductor sensors", S.M. Sze, Wiley Interscience, 1994
- 4. Instrumentation Measurement and Analysis", B. C. Nakara&Chaudhry TATA McGraw-Hill, 2009
- 5. Smart Sensors and Sensing Technology, Daniel E. Suarez, Nova Science Publishers, 2011

Course Outcome:

Course outcome codes	Statement
EE-802B.1	Classify the sensors and transducers used in electrical engineering
EE-802B.2	Implement the knowledge gained to create different techniques to design experiments in a team
EE-802B.3	Carry out project and research by designing new instruments using the different sensing and transducing

	instruments								
EE-802B.4	Develop problems	solutions	for	complex	professional	engineering			

COs	РО	PO	РО	РО	РО	PO	PO	РО	РО	P01	P01	P01	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
EE- 802B.1	3	3	2	2	1	2	2	-	-	1	1	2	3	3
EE- 802B.2	3	3	3	2	2	2	2	-	2	2	2	3	3	2
EE- 802B.3	3	3	3	3	3	3	3	-	3	-	3	3	3	3
EE- 802B.4	3	2	3	2	3	3	3	-	2	-	3	3	3	3
Averag e	3	3	3	2	2	2	2	-	2	1	2	3	3	3

Code of Conducts of the Students

1. PREPARATION

All students must understand that it is their responsibility to follow this Code of Ethics and Conduct (hence referred to as the 'Code') and the rights, obligations, and limitations that it entails.

That the Institute's goal in implementing this Code is to pioneer and administer an equitable, conscientious, effective, and timely student discipline procedure, as well as to provide a system that encourages student progress through individual and communal accountability.

All students are expected to be well-versed in this Code, which may also be found on the Institute's official website.

2. JURISDICTION

2.1 The Institute shall have jurisdiction over the conduct of students associated/enrolled with the Institute, and shall be aware of all acts of misconduct, including incidents of ragging or otherwise, that occur on the Institute campus or in connection with Institute-related activities and functions.

2.2 The Institute may have jurisdiction over conduct that occurs off-campus that violates the ideal student conduct and discipline as outlined in this Policy and other regulations, as if the conduct occurred on campus, which shall include:

a) Any violations of the Sexual Harassment Policy of the Institute against other students of the Institute.

b) Physical assault, threats of violence, or conduct that threatens the health or safety of any person including other students at the Institute.

c) Possession or use of weapons, explosives, or destructive devices off campus.

d) Manufacturing, selling, or distributing illegal narcotics, alcohol, or other substances.

e) Conduct that has a negative impact on members of the off-campus community or is a nuisance to them.

The Institute shall consider the seriousness of the alleged offence, the risk of harm involved, whether the victim(s) are members of the campus community, and/or whether the offcampus conduct is part of a series of actions that occurred both on and off-campus when deciding whether to exercise such off-campus jurisdiction in the situations enumerated herein.

3. BEHAVIOR AND ETHICS

3.1 This Code applies to all types of student conduct on Institute grounds, including Institute-sponsored activities, functions hosted by other recognized student organizations, and any off-campus conduct that has or may have serious consequences or a negative impact on the Institute's interests or reputation.

3.2 Each student must sign a declaration recognizing this Code and promising to follow it at the time of admission:

a) He/she must be regular and complete his/her studies at the Institute.

b) If a student is obliged to abandon studies for any justifiable reason, he/she may be removed from the Institute with the Principal's written agreement.

c) As a result of such relief, the student will be required to pay any outstanding hostel/mess dues, and if the student was admitted on a scholarship, the grant will be cancelled.

3.3. The Institute believes that implementing behavioral norms would help to create a safe and efficient environment. All students must maintain academic integrity, respect all individuals and their rights and property, and ensure the safety of others, among other things.

3.4 All students shall refrain from engaging in all forms of wrongdoing, including engaging in any off-campus activities that could jeopardize the Institute's interests and reputation.

3.5 Discrimination (physical or verbal) based on a person's gender, caste, race, religion, or religious beliefs, color, region, language, disability, or sexual orientation, marriage, or family status, physical or mental disability, gender identity, or other factors.

3.6 Deliberately causing damage to Institute property or the property of other students and/or faculty members.

3.7 Any disruptive behavior in a classroom or at an Institute-sponsored event.

3.8 Inability to produce the Institute's identity card or refusal to produce it when asked by campus security officers.

3.9 Participating in activities without the Institute's consent, such as:

3.9.1 Organizing gatherings and processions.

3.9.2 Accepting membership in religious or terrorist organizations that the Institute/Government of India has outlawed.

3.9.3 Contrary to law or policy, illegal possession, carrying, or use of any weapon, ammunition, explosives, or potential weapons, fireworks.

3.9.4 Illegal possession or use of hazardous chemicals and controlled substances.

3.9.5 Smoking on the Institute's premises.

3.9.6 Possessing, consuming, distributing, selling, and/or tossing empty bottles on the Institute's campus are all prohibited.

3.9.7 Parking a vehicle in an area designated for parking other types of vehicles or in a no parking zone.

3.9.8 Improper driving on campus that may cause others to be inconvenienced.

3.9.9 Not informing the Chief Medical Officer about a pre-existing health problem, whether physical or psychological, that could impede academic development.

3.9.10 Unauthorized access to others' resources or theft.

3.9.11 Misconduct during student body elections or any Institute-sponsored activity.

3.9.12 Behaving in a disorderly, lewd, or indecent manner at the Institute, including, but not limited to, making excessive noise, pushing, and shoving, inciting or participating in a riot, or causing a group disruption.

3.10 Students are not permitted to communicate with media representatives on behalf of the Institute or to invite media persons to the campus without the authorization of the Institute management.

3.11 Without prior authorization, students are not permitted to capture audio or video lectures in classes or the behaviors of other students, instructors, or staff.

3.12 Students are not permitted to supply media with audio or video clips of any campus activity without prior approval.

3.13 Students are required to use social media properly and with caution. They are prohibited from making negative comments about other Institute employees on social media or engaging in any other activity that could harm the Institute's reputation.

3.14 Unauthorized entry, use, tampering, etc. of Institute property or facilities, private residences of staff/professors, offices, classrooms, computers networks, and other restricted facilities, as well as interference with others' work, is punishable.

3.15 Any damage to or destruction of Institute property or the property of others on Institute grounds.

3.16 Without the person's knowledge and explicit agreement, making a video/audio recording, taking pictures, or streaming audio/video of any person in a location where the person has a reasonable expectation of privacy.

3.17 Harassment, which is defined as harsh and objective behavior motivated by a person's race, color, national or ethnic origin, citizenship, sex, religion, age, sexual orientation, gender, gender identity, marital status, ancestry, physical or mental disability, or medical condition.

4 If there is a case against a student for a probable breach of code of conduct, then a committee will be constituted to recommend a suitable disciplinary action who shall enquire into the alleged violation and consequently indicate the action to be taken against the said student.

The committee may meet with the student to determine the extent of the misbehavior and recommend one or more of the disciplinary actions listed below, depending on the severity of the misconduct.

4.1 WARNING- Indicating that the delinquent student's actions were in breach of the Code, and that any future acts of misbehaviour will result in serious disciplinary punishment.

4.2 RESTRICTIONS - Reprimanding and restricting access to certain campus facilities for a period.

4.3 COMMUNITY SERVICE - For a set amount of time, which may be extended if necessary. Any future wrongdoing, as well as failure to comply with any imposed limitations, may result in severe disciplinary action, such as suspension or expulsion.

4.4 EXPULSION - Permanent expulsion of a student from the Institute, indicating that attending the Institute or participating in any student-related activities or living on campus is prohibited.

4.5 FINANCIAL PENALTY- This could include the suspension or forfeiture of a scholarship or fellowship for a set period.

4.6 SUSPENSION- A student may be suspended for a length of time, preventing them from engaging in student-related activities, classes, or programmes. Furthermore, unless permission is acquired from the Competent Authority, the student will be prohibited from using various Institute facilities. Suspension may be followed by dismissal, as well as the other punishments listed below.

4.7 For a period of three years, you will be ineligible to reapply for admission to the Institute, and

4.8 Withholding the grade card or certificate for the courses studied or work \scarred out.

5 APPEALS:

If a delinquent student feels he or she has been wronged by the application of any of the above punishments, he or she may file an appeal with the Principal. The Principal may decide on one of the following:

5.1 Accept the committee's proposal and impose the punishment recommended by the Committee or amend and impose any of the punishments stated in this Code that are appropriate with the degree of the proven wrongdoing. Or

5.2 Recommend the case to the committee for further consideration.

In all circumstances where there is a potential for student misconduct, the Director's decision is final and binding.

6 ACADEMIC INTEGRITY

The Institute values academic integrity and is devoted to building an intellectual and ethical environment based on academic integrity principles as a top institution for advanced scientific and technology research and education.

Academic integrity includes honesty, accountability, and awareness of ethical standards for study and scholarship. The Institute believes that the ideas and contributions of others should be appropriately acknowledged in all academic work. Academic integrity is critical to the Institute's and its research missions' success, and so academic integrity infractions are a significant offence.

6.1 Purpose and Scope

A. The academic integrity policy, which is an integral aspect of the Code, applies to all students at the Institute, and they are obligated to follow it.

The Policy serves a dual purpose:

- To make the ideals of academic honesty clearer, and
- To give examples of dishonest behavior and academic integrity infractions.

NOTE: These examples are intended to be illuminating rather than exhaustive.

B. Failure to follow these academic integrity principles jeopardizes the Institute's reputation as well as the worth of the degrees issued to its students.

As a result, every member of the Institute community takes responsibility for upholding the highest standards of academic integrity.

C. Academic integrity dictates that a student appropriately acknowledges and references the use of others' ideas, results, materials, or language.

Ensures that all work submitted as his or her own in a course or other academic activity is produced without the use of impermissible materials or impermissible collaboration; properly acknowledges all contributors to a given piece of work; and ensures that all work submitted as his or her own in a course or other academic activity is produced without the use of impermissible materials or impermissible collaboration.

Obtains all data or results ethically and accurately reports them, with no results suppressed that contradict his or her interpretation or conclusions.

Demonstrates ethical behavior toward all other students, respecting their integrity and right to pursue their educational goals without hindrance. This means that a student must not assist others in academic dishonesty or hamper their own academic advancement.

6.2 Examples of policy violations include, but are not limited to:

(i)Plagiarism Violation:

Plagiarism is defined as the use of someone else's content, ideas, figures, code, or data without properly recognizing the original source. This could include submitting material written by another person or previously published by oneself, directly or paraphrased.

Plagiarism can be defined as:

(a) reproducing text/sentences from a report, book, thesis, publication, or the internet in whole or in part.

(b) Reproducing previously published data, illustrations, figures, or images, whether one's own or someone else's.

(c) Incorporating non-textual material from other sources into one's class reports, presentations, manuscripts, research papers, or thesis without proper attribution, such as graphs, drawings, photographs, diagrams, tables, spreadsheets, computer programmes, or other non-textual material from other sources.

(d) Self plagiarism which comprises copying verbatim from one's own earlier \spublished work in a journal or conference proceedings without necessary citations.

e) Completing a course requirement by submitting a purchased or downloaded term paper or other resources.

f) Without citation, paraphrasing or modifying an author's words or style.

(ii) Cheating:

Cheating can take many forms, including, but not limited to:

(a) Exam copying, as well as copying of homework assignments, term papers, theses, or manuscripts.

(b) Permitting or enabling copying, making a report, or taking an examination on behalf of another person.

(c) Using unlawful materials, copying, collaborating without permission, and purchasing or borrowing papers or materials from a variety of sources.

(d) fabricating (falsifying) data and reporting it in theses and publications.

(e)Inventing new sources or citations when none exist

(f) Making changes to previously evaluated work and submitting it for re-evaluation

(g) Signing an assignment, report, research paper, thesis, or attendance sheet in the name of another student.

(iii) Conflict of Interest:

In a variety of activities such as teaching, research, publication, serving on committees, research funding, and consultancy, a clash of personal or private interests with professional actions can lead to a potential conflict of interest. Actual professional independence, integrity, and commitment must be protected, as well as the appearance of any impropriety resulting from conflicts of interest.

Conflict of interest is not restricted to personal financial gain; it extends to a vast range of professional academic activities including peer reviewing, serving on numerous committees, which may, for example, monitor financing or grant recognition, as well as influencing public policy.

Potential conflicts of interest must be notified in writing to competent authorities for a thoughtful decision to be made on a case-by-case basis, to promote transparency and boost credibility. In the part below dealing with resources, there is also some more information.

4.3 Academic behavior guidelines are presented here to protect against both negligence and purposeful dishonesty:

(a) For experiments and computational tasks, use suitable procedures. Data should be accurately described and compiled.

b) Save primary and secondary data such as original photographs, equipment data readouts, laboratory notebooks, and computer folders with care. Digital alteration of images/photos should be kept to a minimum; the original version should be maintained for subsequent inspection if necessary, and the changes done should be clearly indicated.

c) Ensure that experiments and simulations are robustly reproducible and statistically analyzed. It's critical to be honest about the facts and avoid "cherry picking" (omitting some data pieces to produce an outstanding statistic).

d) Laboratory notes should be kept in bound notebooks with printed page numbers so that they can be checked later for publication or patenting purposes. Each page should have a date on it.

e) Use your own language to write clearly. It is vital to resist the temptation to "copy and paste" from the Internet or other sources for class tasks, manuscripts, and thesis.

f) Cite prior reports, methodologies, computer programmes, and other sources appropriately. It's also a good idea to cite material from your own published work; otherwise, it'll be regarded self-plagiarism.

6.3. Individual and Collective Responsibilities: Responsibilities differ depending on the role played.

a) Student responsibilities:

Before submitting a thesis to the department (B.Tech, M Tech), the student is responsible for reviewing the thesis for plagiarism using proper tools. Furthermore, the student must guarantee that he or she is aware of the Institute's academic norms, that the paper has been examined for plagiarism, and that the thesis is original work. Plagiarism cannot always be detected with a web search. If a student notices or learns of any violations of the academic integrity policy, he or she should report the wrongdoing as soon as possible.

b) Faculty responsibilities:

Faculty members should guarantee that suitable methods for experiments, computations, and theoretical developments are followed, and that data is properly recorded and stored for future reference. They should also thoroughly analyze manuscripts and theses. Faculty members must also ensure personal compliance with the broad principles of academic integrity. Faculty members are expected to inform students in their respective courses about the Institute's academic integrity policy, to ensure minimum academic dishonesty, and to respond appropriately and promptly to academic integrity violations.

c) Institutional responsibilities:

A breach of academic integrity is a serious offence that can result in a variety of sanctions for both the individual and the institute. In the event of a student, the first academic infringement will result in a warning and/or a "F" mark in the course. If a repeat offence is deemed serious enough, it may result in expulsion. Faculty should bring any academic infractions to the attention of the department chairperson. When the Director receives reports of scientific misconduct, he or she may create a committee to review the situation and make recommendations for appropriate action on a case-by-case basis.