

Department of Computer Science and Engineering

INDEX

Sl. No.	Content Page No
1	About the Institute
2	Message of the Founder Chairman, Managing Director, Director & Principal
3	Institutional Vision & Mission
4	Core Values & Quality Policy
5	BOG Members
6	Academic Council
7	Internal Quality Assurance Cell (IQAC)
8	Administrative Offices

Department of Computer Science and Engineering

9	About the Department
10	Departmental Vision and Mission
11	Program educational objective (PEOs)
12	Program Outcomes (POs)
13	Program Specific Outcomes (PSOs)
14	Bloom's Taxonomy of Learning Domains
15	Revised Bloom's Taxonomy of Learning Domains
16	Mapping Out Learning Outcomes and Assessment Levels with Revised Bloom's Taxonomy

Department of Computer Science and Engineering

17	Establish the correlation between the PEOs and Missions of the Department
18	Establish the correlation between the POs and the PEOs
19	Student centric methods, such as experiential learning, participative learning and problem-solving methodologies are used for enhancing learning experiences
20	Program Curriculum of B.Tech in ME
21	Syllabus with Course Outcomes
22	Code of Conducts of the Students

About the Institute

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex (formerly known as Dr. Sudhir Chandra Sur Degree Engineering College) was established under the auspices of JIS Foundation under Section 2(f) of the UGC Act, 1956.

This Institute, which was founded in 2009, is now well-known for its innovative and rigorous curriculum, which has produced experts in a variety of businesses and sectors in India and beyond.

The Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex, which has been known for its research culture and excellence in imparting Engineering, Science, and Management education for the past 12 years and is located near the Dum Dum Metro Railway Station and International Airport, is known for its research culture and excellence in imparting Engineering, Science, and Management education.

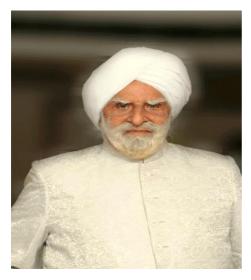
The institute is a virtual paradise of pristine environment and beautiful beauty, nestled in a rural setting of lush green fields. The beautiful avenue of trees and flowers on campus, aptly titled "Green Field," attest to the importance of ecology and the environment. The atmosphere on campus is ideal for academic endeavours.

SurTech has taken a worldwide approach to research and teaching, focusing on foreign viewpoints and knowledge. The Institute is dedicated to greatness and strives for it constantly, accepting nothing less than the best. Its faculty, which

includes intellectual giants from India and internationally, is the Institute's bedrock.

SurTech is in the forefront of using cutting-edge technology and preparing students for a globalised economy while also promoting holistic learning, unbiased knowledge, industryfocused skills, ethics, a cosmopolitan outlook, and accountability for actions.

SurTech is establishing a national and international footprint through partnerships with world-class universities, study abroad programmes, and overseas internships and research.


It provides a comprehensive curriculum across a wide range of engineering degree programmes. These programmes provide students with a variety of academic options.

The Institute provides great educational opportunities for youth from all over the world at a reasonable cost. Through its social responsibility efforts, the Institute also provides unwavering support for community services.

Department of Computer Science and Engineering

Message of the Founder Chairman Sir

"Vision looks inward and becomes duty. Vision looks outward and becomes aspiration. Vision looks upward and becomes faith."

I always exper-	ienc	ed a				
yearning		to				
acknowledge my						
responsibilities a						
reciprocate		by				
contributing	to	the				
growth		and				
development	of	our				
society.						

Years ago, when I visited my son's school, I perceived that the best way to advance society is by fostering education and it was at that moment that the dream and vision of JIS Group Educational Initiatives was conceived.

---Late Sardar Jodh Singh

Now, when this vision of duty, aspiration and faith has become a reality, it is a proud moment for me and my team to see thousands of students pursuing higher education in JIS Group of Colleges and equipping themselves to become industry ready professionals for successful careers.

In this process the Group intends to unite all dimensions of Education from Undergraduate to Post

Department of Computer Science and Engineering

Graduate Programmes in Engineering and Technology, Computer Applications, Dental Science, Pharmacy, Hospitality, diverse streams of Management and so on under the same umbrella to optimize the reach of Educational Initiatives comprehensively and collectively in every stratum and corner of society towards a better future.

Our educational Initiatives believes that creating an academic foundation for social, cultural, scientific, economic, and technological development in our Nation can mature into Global Interface by giving way to education exchange in the international territory as well.

Therefore, our focus is to achieve unparalleled excellence that will bring development to our society and mankind by optimizing their potential, thereby establishing the observation of the renowned Journalist Sydney J. Harris on the role the purpose of education which is to "turn mirrors into windows".

---Late Sardar Jodh Singh Founder Chairman, JIS Group

Department of Computer Science and Engineering

Message of the Managing Director Sir

In its broadest meaning, education is any act or experience that shapes a person's mind, character, or physical abilities.

Technically, education is the deliberate transmission of society's acquired knowledge, skills, and values from generation to generation.

Thus, education is the basic fulcrum that drives societal growth.

The quality of education is clearly the priority in this era of globalization. Quality is not a single metric.

A good educational institution works to maintain and improve quality in all areas of operation.

I believe that a teacher may shape an educated and socially responsible human being by instilling two traits in students: curiosity and determination. Second, a teacher's noble life becomes a light for students when they establish strong values and put them into practice.

SurTech's objective to provide the best studying, teaching, and research possibilities for students and academics is to provide students with modern knowledge and strong values.

Our students find the thrill and rigor of new discoveries, and develop skills of investigation, evaluation, and

Department of Computer Science and Engineering

communication that will serve them well in their jobs and lives.

Students' creativity, teamwork, and international competition thrive. SurTech is committed to academic independence and cultural diversity to attract students and teachers.

At Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex (SurTech), we try to establish an environment that inspires personal and professional progress. Our efforts are focused on recognizing and understanding human talent and enthusiasm. SurTech is thus about "how we can best educate our students to confront the future's challenges".

With a 160-year tradition of academic achievement, scientific advancements, and high-tech innovation. I urge you to seize this fantastic chance and join us actively contributing to the globalization of our society.

With these remarks, I welcome everyone to SurTech and wish them every success on their new adventure with us.

---Sardar Taranjit Singh MD, JIS Group

Department of Computer Science and Engineering

JIS GROUP

Message of the Principal Sir

I am honoured and greatly privileged to lead Dr. Sudhir Chandra sur Institute of Technology & Sports Complex (SurTech) and continue the ambitious strategy of addressing the challenges and opportunities of future to benefit our communities more widely.

On the global platform, India has the responsibility of transforming itself into a developed nation with a strong ethical system- this; however, is a great challenge, as this can only be achieved through the youth of today who have the power of ideas, ambition, ability and most importantly passion.

I believe passionately that we are all born with tremendous capabilities, but unfortunately, we lose these as time goes by and ironically this can be directly attributed to the current system of education which stifles the creative senses rather than enhancing it.

Stepping into the JIS Group of Institutions is stepping into a brighter world of education and a knowledge hub. It is worthwhile to take advantage of the opportunity to see the difference and enjoy the "joy of learning."

Dr. Sudhir Chandra Sur Institute of Technology and Sports Complex (Formerly known as Dr. Sudhir Chandra Sur Degree Engineering College) is one of India's top educational institutions, providing high-

Department of Computer Science and Engineering

quality education to students with the goal of becoming a world-class technical education and scientific research institution.

Since its inception in 2009, SurTech under the aegis of JIS Group has continued in subtle ways to pour fresh knowledge, human capital, and innovation into the engines of our society and nurturing a new generation of young professionals who are prepared to face the ever-changing social, economic, and technological landscape of our country to build a more inclusive and sustainable society on a national and international scale.

Over the last decade, the Institute has evolved into a strong blend of cutting-edge infrastructure and tightly connected human resources dedicated to providing professional education with a focus on creativity and innovation.

In a short span SurTech has become an ensemble of a multi-layered educational system which covers all aspects of diploma, under-graduate, and post-graduate education with smartly crafted and industry compliant course curricula using state-of-art infrastructure in a climate of possibility and transform lives and enhance communities.

The research activities of our faculty lead to an extraordinary enrichment of the experience of our students that is realized at both the graduate and undergraduate levels. The research training provided to our graduate students creates the next generation of scholars well-prepared to advance knowledge and transfer technology. The extension of research

opportunities to an ever-increasing group of undergraduate students adds a dimension of experience to the undergraduate education that simply cannot be duplicated in the classroom.

SurTech heralds the latest and newest but never allows itself to be consumed by the intellectual fads of the day. Our graduates are smart, collaborative, and entrepreneurial. They use creative space of SurTech to actualize their potential. We are encouraging entrepreneurship and innovation on the campus.

We are facilitating campus recruitments and connecting our students to the world. The College strives for quality in training to instil a feeling of professional responsibility, social and cultural awareness, and to prepare students for leadership roles.

Campus life here emphasises the value of extracurricular activities in addition to academic learning, exposing students to a variety of fresh opportunities. All of this contributes to our student's development as a thoroughbred professional, wellsuited to contribute to his chosen field while keeping an open mind to new ideas and concepts in industrial and technical breakthroughs through conducting Guest Industrial Visits, Lectures. Vocational Training (internships), student chapters of international professional groups, sponsored projects, and other means, students can meet with industry experts.

I can say with legitimate pride that the College has achieved far more than just the modest target set at the

Department of Computer Science and Engineering

time of its inception by producing a trained human resource to serve the country in all walks of life and by contributing to the knowledge base.

I am glad to have this opportunity to serve as the Principal of this glorious institution. SurTech pledges to the state, the nation, and the world that our endeavours will benefit all citizens. I invite you to join and strengthen this venture.

---Prof. (Dr.) Saradindu Panda PhD-Tech (NIT, DGP), M. Tech (VLSI, J.U), BE (UIT, BU) Chair, IEEE CASS Kolkata Section IQAC Member of Swami Vivekananda College, RKM, Rahara MIEEE, MIASSE, MIEI, MIETE, MIAENG, MCSTA, MIRED, MIAE, MITEEA

Department of Computer Science and Engineering

Institutional Vision

To be a top global technology institute that creates leaders & innovators and generates new knowledge for society & industry via transformative education.

Institutional Mission

Excellence in Education: Education of world-class quality, based on ethics and critical thinking, for the betterment of life.

Innovative Research: An innovation ecosystem to advance knowledge and tackle pressing issues.

Impactful People: Happy, accountable, compassionate, and effective employees and pupils.

Productivity Enhancement: Active engagement with national and international companies, as well as institutions, to increase productivity and economic development.

Service to Society: Providing knowledge and compassion to the region and the planet.

Department of Computer Science and Engineering

Core Values

Integrity, Excellence, Accountability, Transparency, and Empathy are the abiding ideals established by the Institute.

Integrity & Honesty:

Research and teaching must take place in an atmosphere of academic freedom and honesty. In all its efforts, the Institute shall uphold the highest ethical standards.

Equality:

We are dedicated to establishing an institution and a community in which everyone is valued and judged based on their contributions and accomplishments rather than their gender, race, religion, physical abilities, sexual identity, or socioeconomic status. We shall raise awareness of individual and institutional racism, as well as fight to abolish it, through the activities of this institution.

Pursuit of Excellence:

The Institute is dedicated excellence in a11 to aspects of its operations and will strive for continuous improvement through internal and external reviews. Awards and honours will be given out by the Institute to recognize remarkable contributions.

Synergy Teamwork:

through

To become synergistic and succeed, the institute concentrated on four key characteristics: a clear team purpose, effective communication,

empowerment so that the team can lead itself, and ensuring that everyone is committed to the goal.

Accountability:

The Institute is dedicated to creating an atmosphere in which each member of the community recognizes and accepts responsibility for upholding and strengthening our principles.

Empathy:

The Institute's research and education programs will include an awareness of the conditions of our society's poorer members, as well as contributions to solving their problems.

Transparency:

The Institute will follow established procedures and rules, which will be communicated to all stakeholders. All valuable information about the Institute's operations will be made available.

Department of Computer Science and Engineering

Quality Policy

Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex (SurTech) is dedicated to academic excellence, providing high-quality technical education, training, and expertise in a variety of industries, and engineering programmes, enhancing students' inherent abilities, capabilities, and thought processes while also promoting their engineering and technological skills. We are committed to meeting the criteria and improving the efficacy of our quality management system on a continuous basis.

Department of Computer Science and Engineering

Quality Objectives

• To focus on the students' total development by increasing their technological and managerial skills, as well as their leadership talents, and to guarantee that they are well-rounded.

• To foster an environment that promotes effective teaching, active learning, and purposeful research for economic progress.

• Incorporating value-added programmes into the curriculum and increasing students' job chances.

• To review the effectiveness of the institute's programmes on a regular basis, considering the demands of the industry and other areas of employment, and responding positively to those needs.

• To expose students to the difficulties of the twenty-first century while also giving opportunities for them to think creatively and display entrepreneurship abilities to contribute effectively to the nation's growth.

• To provide research creation, consulting, testing, and customised training to satisfy the industry's specific demands, thereby encouraging students to pursue selfemployment and entrepreneurship.

• To provide cutting-edge technological infrastructure and to inspire students to reach their full potential.

• To foster mutually beneficial collaboration with industry, other institutions, and organisations.

• To ensure that the Quality Management System is continually improved.

• Benchmarking the institution against top institutions on a regular basis to adopt best practises for quality improvement.

Department of Computer Science and Engineering

JIS GROUP

BOG Members

	$D_{ref}(D_r) \cap L$ D_{ette}	
1	Prof. (Dr.) G.L. Datta	Chairman
	(Educationist)	
2	The Regional Director, AICTE, Eastern	Memher
2	Regional Office	WICHIOCI
3	Mr. Partha Ghosh, State Govt. Nominee	Member
4	Prof. Narayan Banerjee, MAKAUT	М с на 1- с н
	NOIIIIIEE	
_	Mr. Taranjit Singh, Managing Trustee, JIS	1 1
	Follndation	
	Mr. Haranjit Singh, Trustee Member, JIS	
	FOUNDATION	
	Mr. Amrik Singh, Trustee Member, JIS	
7	Foundation	Member
	Mr. Simarpreet Singh, Trustee Member,	
8	JIS Foundation	Member
	Mr. Hariat Singh Trustes Marshan US	
9	Mr. Harjot Singh, Trustee Member, JIS	Member
	Foundation	
10	Mr. Amanjot Singh, Trustee Member, JIS	Member
	Foundation	
11	Mr. U. S. Mukherjee, Deputy Director, JIS	Member
	Group	
12	Mr. Amit Srivastava, Managing Director,	Memher
	Hash Technology	
12	Dr. Asit Guha, Advisor , JIS Group	Member
13	(Educationist)	MEIIDEI
1 /	Dr. Shefalika Ghosh Samaddar, Professor,	
14	Dept. of CSE, DSCSITSC	wember
	Mr. Vivek Shaw, Asst. Prof of BSHU & In-charge,	
15	Exam Cell	Member
		Member
16	Dr. Saradindu Panda, Principal, DSCSITSC	Secretary
		~ Joi chai j

Department of Computer Science and Engineering

Academic Council

1	Dr. Saradindu Panda,	Chairman					
	Three Nominees of MA						
2	Prof. (Dr.) Manojit Mitra,	University Nominee					
3	Prof.(Dr.) Subhasish	University Nominee					
4	Prof.(Dr.) Amitava Chatterjee,	University Nominee					
Ex	<u>perts / Academicians from C</u>	outside the College					
5	Prof.(Dr.) Goutam Sutradhar,	External Academic					
6	Prof. (Dr.) Debashis De,	External Academic					
7	Prof. (Dr.) Sibapriya	External Academic					
	Mr. Atanu Chowdhury,						
	Deputy General Manager-						
	HR & IR, Electrosteel						
8	Castings LTD	Industry Expert					
9	Mr. Turjasu Pyne, Senior	Industry Expert					
Dear	Dean (Academics), IQAC Coordinator & Controller of						
	Exam						
10	Mr. Vivek Shaw, Asst. Prof.,	Member Secretary					
11	Ms. Amrita Chadha, PA to	Member					
	All the Heads of Depa	artment					
12	Mr. Baibaswata Das, Asst.	Member					
13	Ms. Rinku Supakar, Asst.	Member					
14	Mr. Anirbit Sengupta, Asst.	Member					
15	Mr. Arindam Mukherjee,	Member					
10							
16	Mr. Anirban Chowdhury,	Member					
$\frac{16}{17}$	Mr. Anirban Chowdhury, Dr. Ruma Sen, Asst. Prof.	Member Member					
17 F o	Dr. Ruma Sen, Asst. Prof. Dur Teachers representing di	Member					
17	Dr. Ruma Sen, Asst. Prof.	Member					
17 F (18 19	Dr. Ruma Sen, Asst. Prof. Dr. Teachers representing di Dr. Shefalika Ghosh Dr. Supriyo Srimani, Asst.	Member fferent categories					
17 F 18	Dr. Ruma Sen, Asst. Prof. Dur Teachers representing di Dr. Shefalika Ghosh	Member fferent categories Member					

Internal Quality Assurance Cell (IQAC)

Sl.N	Name	Designation
1	Prof. (Dr.) Saradindu Panda, Principal	Chairman
2	Mr. Vivek Shaw, Asst. Prof., Dept. of BSH	Coordinator
3		Management
	Mr. Simarpreet Singh, Director, JIS Group	Representative
4	Prof. (Dr).Asish K Mukhopadhyay,	
	"Margadarshak-AICTE", Professor (Emeritus),	Academic
	IET, Bundelkhand University, Jhansi, U.P	Expert
5	Dr. Supriyo Srimani, Asst. Prof. Dept. of ECE	Faculty
6	Dr. Shefalika Ghosh Samaddar, Prof. Dept. of	Faculty
7.	Mr. Arindam Mukherjee, Asst. Prof.(TIC) Dept.	Faculty
8.	Mr. Anirban Chowdhury, Asst.Prof.(TIC),	Faculty
7.	Mr. Anirbit Sengupta, Asst. Prof., (TIC) Cum	Faculty
	Admission Coordinator, Dept. of ECE	Representative
8.	Mr. Subhasish Halder, Asst. Prof., Dept. of ME	Faculty
9.	Ms. Debina Dey, Manager, Industry Alliance,	Dept. of T&P
10.	Ms. Amrita Chadha, PA to Principal	Admin
11	Ms. Dazy Rani, Asst. Registrar, Dept. of Admin	Admin
12.	Mr. Arunava Kundu, Asst. Treasurer, Surermath	Nominee from
	Association DumDum	local society
13.	Mr. Rivu Ghosh, System on Chief Design	Nominee from
14.	Mr. Debasish Mazumdar, Associate Director,	Industry
14.	CDAC, Kolkata	Representative
15.	Dr. Dipra Bhattacharya	Parents
16.	Mr. Dipi Ranjan Rauth, 3rd Year, Dept. of CSE	Student
17.	Ms. Debosmita Ganguli, Dept. of ECE	Alumni

JIS GROUP

Administrative Offices

Details	Name of the Contact Person	Contact Number
Academics-Contact Person Details	Principal	9051978666
Admission-Contact Person Details	Aviroop Dewan	6291977707
Centre For Technical Support-Contact Person Details (System Admin)	Abhishek Bysack	7003763638
Estate Office -Contact Person Details (Site Supervision)	Suman Mukherjee	7003831004
Human Resource-Contact Person Details	Amrita Chadha	7829522758
Institutional Information Service (IIS)-Contact Person Details	Nirupam Sarkar	8902496652
TNP & International and Public Relations-Contact Person Details	Debina Dey	9836158442
Office of Student's Welfare- Contact Person Details	Nirupam Sarkar	8902496652
Purchase Office & Store – Contact Person Details	Rahul Chowdhury	8820426030
Registrar Office-Contact Person Details	Amrita Chadha	7829522758
Examination Cell and Student Record Section-Contact Person Details	Vivek Shaw	8296921062
Student Outreach Department-Contact Person	Nirupam Sarkar	8902496652

Department of Computer Science and Engineering

About the Department

Department of Computer Science and Engineering has been successfully functioning since 2009. It offers B.Tech (Computer Science and Engineering). Global excellence and local relevance in teaching, research, and technology development is the main objective of the department.

Every year close to 180 students in B.Tech get admitted in the department. The college attracts very bright students because of the department reputation as well as the excellent placement records. Beyond their excellence in academics, the students show their talents in quizzes, debates, games and many other activities. The students are placed in top companies, top universities across the globe.

The Department of CSE takes care of Software & Hardware requirements of the entire Institute. The strength of the CSE Department is its Alumni, which adds a good amount of perception rating to the department by being most illustrious.

Department is committed to encourage students/researchers to carry out innovative research in the field of Computer Science & Engineering, keeping excellence in focus and deliver quality services to match the needs of the technical education system, industry and society.

Students of CSE department are motivated to be innovative in their thinking while being strong in the Computer Science Core Knowledge.

Faculty of CSE are always dedicated and devoted towards the comprehensive development of their students by training them physically through enough sports & games; psychologically through technical competitions globally.

The department of CSE as a whole aims at the development of Ace Computer Science Professionals with ethical values & societal concern.

Departmental Vision

To be a Department of high repute focused on quality education and innovative research in Computer Science & engineering that prepares professionals and entrepreneurs to lead technical, economic and social development of the society.

Departmental Mission

M1: To provide academic environment for the development of skilled professionals empowered with knowledge, skills, values, and confidence to take a leadership role in the field of Computer Sc. & Engineering.

M2: To cultivate research culture resulting in knowledge and innovative technologies that contributes to sustainable development of the society.

M3: To inculcate work ethics and commitment in students for their future endeavour's to serve socio-economic needs.

M4: To produce graduates with personal and professional responsibilities with dedication to lifelong learning.

Program Educational Objectives

PEO1: Graduates will work efficiently as computer science engineers revealing ethical knowledge and leadership qualities in multi-disciplinary areas.

PEO2: Graduates will accustom with varying technologies, tools and societal requirements.

PEO3: Graduates will design and develop solutions that meet individual and industry needs.

PEO4: Graduates will be motivated for life-long learning to adapt the innovation and changes through research and development.

Program Outcome (PO)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Program Outcome (PO)

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcome

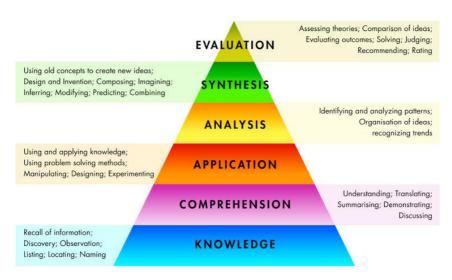
PSO 1: Professional Skills

The ability to understand, analyzes, design, implement and conduct research in the domain of Computer Science & Engineering.

PSO 2: Problem Solving Skills

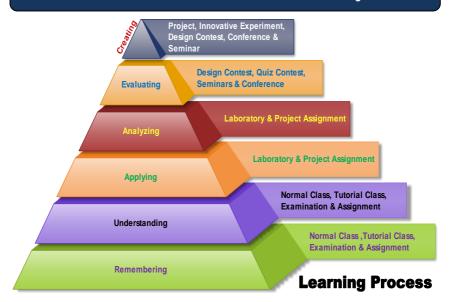
Ability to apply computational technique and methodologies to solve problems using suitable mathematical analysis, data structure and suitable algorithm.

PSO 3: Ethics and Career Development


Inculcate skills required for a successful career in the industry, academic as well as research and development based on principles of software project management, teamwork and ethical practices and also nurture the quest for higher levels of knowledge.

Department of Computer Science and Engineering

Bloom's Taxonomy of Learning Domains


BLOOMS TAXONOMY

Bloom's Taxonomy was created in 1956 under the leadership of educational psychologist Dr Benjamin Bloom to promote higher forms of thinking in education, such as analysing and evaluating concepts, processes, procedures, and principles, rather than just remembering facts (rote learning). It is most often used when designing educational, training, and learning processes.

Bloom's Revised Taxonomy

Lorin Anderson, a former student of Bloom, and David Krathwohl revisited the cognitive domain in the mid-nineties and made some changes, with perhaps the three most prominent ones being (Anderson, Krathwohl, Airasian, Cruikshank, Mayer, Pintrich, Raths, Wittrock, 2000):

changing the names in the six categories from noun to verb forms

rearranging them as shown in the chart below

creating a processes and levels of knowledge matrix

This new taxonomy reflects a more active form of thinking and is perhaps more accurate. The new version of Bloom's Taxonomy, with examples and keywords is shown below, while the old version may be found here.

Mapping Out Learning Outcomes and Assessment Levels with Revised Bloom's Taxonomy

This document focuses on cognitive domains and the dimensions of knowledge. Detailed explanations for each domain and the use of this table follow below.

Remembering Understanding Applying Analyzing Evaluating Creating Image: Summarizing of Matrix (Second Second S				(different leve	els of thinking)		
i i	Кноў-чедые ДАвра∞-чон	 Recognizing Listing Describing Identifying Retrieving Naming Locating Finding 	 Interpreting Exemplifying Summarizing Inferring, Paraphrasing Classifying 	Applying Implementing Carrying out Using 	 Comparing Organizing Deconstructing Attributing Outlining Structuring 	 Checking Hypothesizing Critiquing Experimentin g Judging, Testing Detecting 	 Designing Constructing Planning Producing Inventing Devising Making

. . / 11:00 . 64.1.1

Mapping of PEOs with Mission of the Department

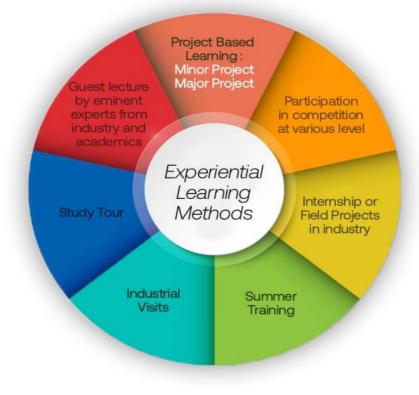
PEO Statements	M1	M2	МЗ	M4
PEO1: 1. Graduates will work efficiently as computer science engineers revealing ethical knowledge and leadership qualities in multi-disciplinary areas.	3	2	2	1
PEO2: 2. Graduates will accustom with varying technologies, tools and societal requirements.	3	2	2	1
PEO3: Graduates will design and develop solutions that meet individual and industry needs	3	2	1	2
PEO4: Graduates will be motivated for life-long learning to adapt the innovation and changes through research and development	1	3	1	3

Note: M1, M2, M3, M4, M5 are distinct elements of Mission statement. Enter correlation levels 1, 2 or 3 as defined below:

- '1': Slight(Low)
- '2': Moderate (Medium)
- '3': Substantial (High)
- '--': *If there is no correlation.*

Department of Computer Science and Engineering

Mapping of PEOs with POs

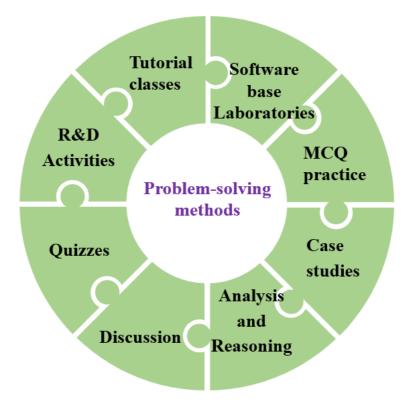

Ed	Program Outcomes											
Program Educational Objectives	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO 9	PO 10	PO11	PO12
PEO1	3	3	1	1	2	3	2	1	2	1	1	2
PEO2	3	3	3	1	3	3	2	1	2	3	1	1
PEO3	2	3	2	3	3	2	3	1	2	3	2	2
PEO4	1	2	3	3	2	2	2	3	3	3	3	3

3-Strongly Mapped, 2-Moderately Mapped, 1-Weakly Mapped,0-NA

Department of Computer Science and Engineering

Student centric methods, such as experiential learning, participative learning and problem-solving methodologies are used for enhancing learning experiences

Department of Computer Science and Engineering


Student centric methods, such as experiential learning, participative learning and problem-solving methodologies are used for enhancing learning experiences

Department of Computer Science and Engineering

Student centric methods, such as experiential learning, participative learning and problem-solving methodologies are used for enhancing learning experiences

Departmental Curriculum Structure

First	t Year First Ser	nester						
Man	datory Inducti	on Program	- 3 weeks duration					
SI	Category	Subject Subject Name		Total Number of contact hours			Credits	
No.		Code	Ŭ	L	Т	Р		
Theo	ory	•						
1	Basic Science course	BS-PH101/ BS-CH101	Physics-I (Gr-A)/ Chemistry-I(Gr-B)	3	1	0	4	
2	Basic Science course	BS-M101/ BS-M102	Mathematics –IA*/ Mathematics –IB *	3	1	0	4	
3	Engineering Science Courses	ES-EE101	Basic Electrical Engineering	3	1	0	4	
	Total Theory			9	3	0	12	
Prac	tical					-		
1	Basic Science course	BS-PH191/ BS-CH191	Physics-I Laboratory (Gr-A)/ Chemistry-I Laboratory (Gr-B)	0	0	3	1.5	
2	Engineering Science Courses	ES-EE191	Basic Electrical Engineering Laboratory	0	0	2	1	
3	Engineering Science Courses	ES-ME191/ ES-ME192	Engineering Graphics & Design(Gr-B)/ Workshop/Manufac turing Practices(Gr- A)	1	0	4	3	
	Total Practical			1		9	5.5	
	Total of First S			10	3	9	17.5	

* Mathematics –IA (BS-M101) - CSE & IT Mathematics –IB (BS-M102) - All stream except CSE & IT

First	Year Second Sem	lester					
Sl No.	Category	Subject Code	Subject Name	of	cont hour	s	Credits
Theo				L	Т	Р	
1 neo	•	BS-PH201/	Physics-I (Gr-B)/				
1	Basic Science courses	BS-CH201/ BS-CH201	Chemistry-I (Gr-A)	3	1	0	4
2	Basic Science courses	BS-M201/ BS-M202	Mathematics –IIA [#] / Mathematics –IIB #	3	1	0	4
3	Engineering Science Courses	ES-CS201	Programming for Problem Solving	3	0	0	3
4	Humanities and Social Sciences including Management	HM-HU201	English	2	0	0	2
		Total Theory	v	11	2	0	13
Pract	tical					1	
1	Basic Science courses	BS-PH291/ BS-CH291	Physics-I Laboratory (Gr-B)/ Chemistry-I	0	0	3	1.5
2	Engineering Science Courses	ES-CS291	Programming for Problem Solving	0	0	4	2
3	Engineering Science Courses	ES-ME291/ ES-ME292	Engineering Graphics & Design(Gr-A)/ Workshop/Manufac turing Practices(Gr- B)	1	0	4	3
4	Humanities and Social Sciences including Management courses	HM-HU291	Language Laboratory	0	0	2	1
		Total Practic	al	1	0	13	7.5
	Total	of Second Se	emester	12	2	13	20.5

Department of Computer Science and Engineering

Mathematics -II (BS-M201) - CSE & IT

Mathematics -- II (BS-M202) - All stream except CSE & IT

	Group-A	Group-B
1st Semester	Workshop/Manufacturing	Chemistry-I (BS-CH101); Engineering Graphics & Design (ES-ME191)
2nd Semester	Engineering Graphics &	Physics-I (BS-PH201); Workshop/Manufacturing Practices (ES-ME292)

		Semester	III (Second year)				
Sl. No.	Type of course	Code	Course Title		ırs week	Credi	
				L	Т	P	ts
Theor	y						
1	Engineering ScienceCourse	ESC 301	Analog and Digital Electronics	3	0	0	3
2	Professional Core Courses	PCC- CS301	Data Structure & Algorithms	3	0	0	3
3	Professional Core Courses	PCC- CS302	Computer Organization	3	0	0	3
4	Basic Science course	BSC 301	Mathematics-III (Differential Calculus)	2	0	0	2
5	Humanities & SocialSciences including Management courses	HSMC 301	Economics for Engineers (Humanities-II)	3	0	0	3
Pract	ical						
6	Professional Core Courses	PCC- CS393	IT Workshop (Sci Lab/MATLAB/Pytho n/R)	0	0	4	2

7	Engineering	ESC 391	Analog and	0	0	4	2
	ScienceCourse		Digital				
			Electronics				
8	Professional Core	PCC-	Data	0	0	4	2
	Courses	CS391	Structure &				
			Algorithms				
9	Professional Core	PCC-	Computer	0	0	4	2
	Courses	CS392	Organisation				
		Tota	ıl Credit				22
1							1

SI.	Type of	Code	Semester IV (Sec	ond ye	-	urs per	
No.	course	Coue	Course Tute		wee	-	Credits
				L	T	Р	
The	ory				-	-1	1
1	Profession al Core Courses	PCC- CS401	Discrete Mathematics	3	1	0	4
2	Professio nal Core Courses	PCC-CS402	Computer Architecture	3	0	0	3
3	Professio nal Core Courses	PCC- CS403	Formal Language &Automata Theory	3	0	0	3
4	Professio nal Core Courses	PCC- CS404	Design & Analysis of Algorithms	3	0	0	3
5	Basic Science courses	BSC 401	Biology	2	1	0	3
6	Mandat ory Courses	MC401	Environmental Sciences	1	-	-	1

7	Engineer	PCC-CS 492	Computer	0	0	4	2
	ing		Architecture				
	Science						
	Course						
8	Professio	PCC- CS494	Design &	0	0	4	2
	nal Core		Analysis of				
	Courses		Algorithms				
				Total	credi	ts	20

			Semester V (Third	year)			
Sl. No.	Type of course	Code	Course Title	Hours per week			Credits
				L	T		
Theory							
1	Engineer ing Science Course	ESC501	Software Engineering	3	0	0	3
2	Professi onal Core Courses	PCC- CS501	Compiler Design	3	0	0	3
3	Professi onal Core Courses	PCC- CS502	Operating Systems	3	0	0	3
4	Professi onal Core Courses	PCC- CS503	Object Oriented Programming	3	0	0	3
5	Humanit ies Social Sciences includin g	HSMC-501	Introduction to Industrial Management (Humanities III)	3	0	0	3

8 9 10	Courses Profession	PCC- CS592	Engineering Operating Systems Object Oriented Programming		0	4	2
9	al Core Courses Profession al Core Courses	PCC- CS592	Engineering Operating Systems				2
	al Core Courses Profession al Core	PCC-	Engineering Operating		0	4	
	al Core Courses Profession	PCC-	Engineering Operating		0	4	
	al Core Courses		Engineering		0	4	
3	al Core	ESC- 591					
8		ESC- 591					
0			Software		0	4	2
rracu	cai					4	
Practi	aal		1 radition				
			Knowledge Tradition				
			Indian				
	Courses						
/	ory	MC- CS501	Constitution of India/ Essence of	-	-	-	0
7	Mandat	MG_00501	Graphics				0
			Computer				
			Architecture/				
			Computer				
			Advanced				
			Intelligence/				
	courses	_	ficial				
	Elective	D	Computation/Arti				
0	onal	501A/B/C/	Theory of		Ŭ	0	5
6	Professi	PEC-IT	(Elective-I)	3	0	0	3
	ment courses						

			Semester VI (Third	d year)		
SL. No.	Type of course	Code	Course Title			ours r week	Credits
				L	T	Р	
Theory							
1	Profession	PCC-	Database	3	0	0	3
	al Core	CS601	Manageme				
	Courses		nt				
2	Profession	PCC-	Computer	3	0	0	3
	al Core	CS602	Networks				
	Courses						
3	Profession	PEC-	(Elective-II)	3	0	0	3
	al Core	IT601A/B/	Advanced				
	Courses		Algorithms/				
			Distributed				
			Systems/ Signals				
			& Systems /				
			Image Processing				
4	Profession	PEC-IT602A/B/	(Elective-III)	3	0	0	3
	al Core		Parallel and				
	Courses		Distributed				
			Algorithms/				
			Data				
			Warehousing &				
			Data				
			Mining/Human				
			Computer				
			Interaction/Patter				
			n Recognition				
5	Open	OEC-IT601A/B	(Open Elective-)	3	0	0	3
	Elective		Numerical				
	courses		Methods/ Human				
			Resource				
			Development and				
			Organizational				

			Behavior					
6	Proj ect	PROJ- CS601	Research Methodology	3	0	0	3	
Pract	ical							
7	Profession al Core Courses	nPCC- CS691	Database Management	0	0	4	2	
8	Profession al Core Courses	nPCC-CS692	Computer Networks	0	0	4	2	
				Tota	al creo	lits		22

		Semester	· VII (Fourth year)				
Sl. No.	Type of course	Code	Course Title	Hours per week			Credi
				L	Т	Р	ts
Theor	ry	L					
1	Professional Elective courses	PEC- CS701A/B C/D/E	(Elective-IV) Quantum Computing/ Cloud Computing/ Digital Signal Processing/Multi- agent Intelligent Systems/Machine learning	3	0	0	3
2	Professional Elective courses	PEC- CS702A/B (C/D/E	(Elective-V) Neural Networks and Deep Learning/ Soft Computing/ Ad-Hoc and Sensor Networks/Informati	3	0	0	3

			on Theory and Coding/Cyber Security				
3	Open Elective courses	DEC- CS701A/B / C	(Open Elective-II)	3	0	0	3
4	Humanities &Social Sciences including Management courses	HSM C 701	Project Management and Entrepreneurship	2	1	0	3
5	Project	PROJ- CS781	Project-II	0	0	12	6
Total	credits						18
Total	credits			<u> </u>		I	18
Total	credits	Semester	VIII (Fourth year)				18
Total Sl. No.	credits Type of course	Semester Code	VIII (Fourth year) Course Title		Hou per	urs week	18 Credi ts
Sl.		1		L 3			Credi

2	Open Elective	DEC-	Open Elective-III	3	0	0	3	
	courses	CS801A/B	Big Data					
		1	Analysis/Cyber Law					
		C/D/E	and Ethics/ Mobile					
			Computing/Robotics					
			S oft Skill &					
			Interpersonal					
			Communication					
3	Open Elective	DEC-	(Open Elective-IV)	3	0	0	3	
	courses	CS802A/B	E-Commerce and					
		(C	ERP/Micro-					
			electronics and					
			VLSI					
			Design/Economic					
			Policies					
			in India					
4	Project	PROJ-	Project-III	0	0	12	5	
		CS881						
Total Credit								

Syllabus & Course Outcomes

1st Semester/1st Yr

BS-CH101: Chemistry-I

Course Outcome (CO)

On successful completion of the learning sessions of the course, the learner will be able to:

	COURSE OUTCOMES (COs)									
CODE	DE DESCRIPTION									
CO1	Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces and list major chemical reactions that are used in the synthesis of molecules									
CO2	Rationalise bulk properties and processes using thermodynamic considerations									
CO3	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques									

	Rationalise periodic properties such as ionization
CO4	potential, electro negativity, oxidation states and
	electro negativity.

CO-PO Mapping

Co & PO Mapping BS-CH101 to PO attainment

	РО	PO	РО	РО	PO	РО	РО	РО	РО	РО	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	3	3	2	2	-	2	-	-	-
CO2	3	3	3	3	3	3	3	-	2	-	-	2
CO3	2	3	3	3	3	3	2	-	3	3	-	-
CO4	3	3	3	3	3	2	-	-	-	2	-	2
Average	2.75	3	2.75	3	3	2.5	2.33	-	2.33	2.5	-	2

Syllabus (BS-CH101)

<u>Unit I</u>: Atomic and molecular structure

Schrodinger equation. Particle in a box solutions and their applications for simple sample. Molecular orbitals of diatomic molecules (e.g.H2). Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Unit II: Spectroscopic techniques and applications

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications inmedicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magneticresonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering

<u>Unit III</u>: Intermolecular forces and potential energy surfaces

Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena.

Unit IV: Use of free energy in chemical equilibria

Department of Computer Science and Engineering

First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.

Unit V: Periodic properties

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries

<u>Unit VI</u>: Stereochemistry

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

<u>Unit VII</u>: Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

Books

Learning Resources:

- 1. Engineering Chemistry, Satyaprakash, Khanna Book Publishing, Delhi
- 2. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 3. Physical Chemistry, by P. W. Atkins
- 4. Spectroscopy of Organic Compounds, by P.S.Kalsi, New Age International Pvt Ltd Publishers
- 5. Physical Chemistry, P. C. Rakshit, Sarat Book House
- Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition

BS-PH101: Physics

Course Outcome (CO)

On successful completion of the learning sessions of the course, the learner will be able to:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
CO1	Learn basic concepts of quantum physics, simple quantum mechanics calculations; Macrostate, Microstate, Density of states, Qualitative treatment of MB, FD and BE statistics.
CO2	Solve problems including constraints & friction. Basic ideas of vector calculus and partial differential equations. Harmonic oscillator. Damped harmonic motion forced oscillations and Resonance. Motion of a rigid body.
CO3	Apply the wave properties of light Interference, Diffraction and Polarization; Lasers: Principles and working of laser to solve real life problem
CO4	Understand Maxwell's equations. Polarization, Dielectrics; Magnetization, magnetic-hysteresis.

CO-PO Mapping

CO-PO Mapping BS-PH101 to PO attainment

	РО	PO	РО	РО	PO	PO	PO	РО	РО	PO1	PO1	PO1
	1	2	3	4	5	6	7	8	9	0	1	2
C01	3	3	-	2	-	-	2	-	2	-	-	3

Department of Computer Science and Engineering

CO2	3	3	-	2	-	-	2	-	2	-	-	3
CO3	3	3	-	3	-	-	-	-	2	-	-	3
CO4	3	3	-	3	-	-	-	-	2	-	-	3
avg	3	3	-	2.5	-	-	2	-	2	-	-	3

Syllabus

UNIT 1.

Mechanics

Problems including constraints & friction. Basic ideas of vector calculus and partial differential equations. Potential energy function F = -grad V, equipotential surfaces and meaning of gradient. Conservative and non-conservative forces. Conservation laws of energy & momentum. Non-inertial frames of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector. Moment of inertia. **UNIT 2.**

UNIT 2

Optics

Distinction between interference and diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits (only the expressions for max; min, & intensity and qualitative discussion of fringes); diffraction grating (resolution formulae only), characteristics of diffraction grating and its applications.

Polarization:

Introduction, polarization by reflection, polarization by double reflection, scattering of light, circular and elliptical polarization, optical activity.

Lasers:

Principles and working of laser – population inversion, pumping, various modes, threshold population inversion with examples

UNIT 3.

Electromagnetism and Dielectric Magnetic Properties of Materials

Maxwell's equations, Polarization, permeability and dielectric constant, polar and non-polar.

Dielectrics, internal fields in a solid, Clausius-Mossotti equation (expression only), applications of dielectrics.

Magnetization: permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications. **UNIT 4.**

Quantum Mechanics

Introduction to quantum physics, black body radiation, explanation using the photon concept, Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves, uncertainty principle, Schrodinger wave equation, particle in box, quantum harmonic oscillator, hydrogen atom.

UNIT 5.

Statistical Mechanics

Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Books

Learning Resources:

- 1. Introduction to Electrodynamics, David J. Griffiths, Pearson Education India Learning Private Limited
- 2. Principles of Physics, 10ed, David Halliday, Robert Resnick Jearl Walker, Wiley

- 3. Electricity, Magnetism, and Light, Wayne M. Saslow, Academic Press
- 4. Engineering Mechanics (In SI Units) (SIE), S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati , McGraw Hill Education
- 5. Classical mechanics, Narayan Rana, Pramod Joag, McGraw Hill Education
- 6. Introduction to Classical Mechanics, R Takwale, P Puranik, McGraw Hill Education
- 7. Engineering Mechanics, M.K. Harbola, Cengage India
- 8. An Introduction to Mechanics (SIE), David Kleppner, Robert Kolenkow, McGraw Hill Education
- 9. Principles of mechanics, John L. Synge and Byron A. Griffith, New York, McGraw-Hill
- 10. Mechanics (Dover Books on Physics) , J. P. Den Hartog , Dover Publications Inc.
- 11. Engineering Mechanics: Dynamics, L.G. Kraige J.L. Meriam, Wiley
- 12. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Robert Eisberg, Robert Resnick, Wiley
- 13. Introduction to Quantum Mechanics, J. Griffiths David , Pearson Education
- 14. Modern Quantum Mechanics, J. J. Sakurai, Cambridge University Press
- 15. Optics, Hecht, Pearson Education
- 16. Optics, Ghatak, McGraw Hill Education India Private Limited
- 17. Fundamentals of Statistical and Thermal Physics, Reif, Sarat Book Distributors
- 18. Statistical Mechanics, Pathria, Elsevier
- 19. Statistical Physics, L.D.Landau , E.M. Lifshitz, Butterworth-Heinemann

BS-M101: Mathematics - IA

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
C01	Apply the concept and techniques to differential and integral calculus to determine curvature and evaluation of different types of improper integrals.
CO2	Explain the domain of applications of mean value theorems to engineering problems.
CO3	Learn different types of matrices, concept of rank, methods of matrix inversion and their applications.
CO4	Understand linear spaces, its basis and dimension with corresponding applications in the field of computer science.
CO5	Develop the concept of Eigen values, Eigen vectors, Diagonalization of matrices and orthogonalization in inner product spaces for understanding physical and engineering problems.

Department of Computer Science and Engineering

CO-PO Mapping

CO & PO Mapping BS-M101 to PO attainment

	PO	PO	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	2	-	2	-	2	-	2	2
CO2	3	3	2	-	2	2	2	-	2	I	-	-
CO3	3	3	2	2	2	2	2	-	2	-	3	2
CO4	3	3	2	2	3	2	2	-	-	-	2	3
CO5	3	3	3	2	2	-	-	-	-	-	2	1
Avg	3	3	2.4	2	2.2	2	2	-	2	-	2.25	2

Syllabus (BS-M101)

Module 1: Calculus (Integration) [8L]

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

Module 2: Calculus (Differentiation) [6L]

Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.

Module 3: Matrices [7L]

Department of Computer Science and Engineering

Matrices, Vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination.

Module 4: Vector Spaces [9L]

Vector Space, linear dependence of vectors, Basis, Dimension; Linear transformations (maps), Range and Kernel of a linear map, Rank and Nullity, Inverse of a linear transformation, Rank-Nullity theorem, composition of linear maps, Matrix associated with a linear map.

Module 5: Vector Spaces (Continued) [10L]

Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric, and Orthogonal Matrices, Eigenbases. Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.

Books

Learning Resources:

1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.

2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.

3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.

4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.

5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.

6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, NewDelhi.

7. S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.

8. Hoffman and Kunze: Linear algebra, PHI.

BS-M102: Mathematics - IB

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
CO1	Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.
CO2	Understand the domain of applications of mean value theorems to engineering problems.
CO3	Learn the tools of power series and Fourier series to analyze engineering problems and apply the concept of convergence of infinite series in many approximation techniques in engineering disciplines.
CO4	Apply the knowledge for addressing the real life problems which comprise of several variables or attributes and identify extremum points of different surfaces of higher dimensions.
CO5	Learn and apply the concept of rank-nullity, eigen values, eigen vectors, diagonalization and orthogonalization of matrices for understanding physical and engineering problems.

Department of Computer Science and Engineering

CO-PO Mapping

CO & PO Mapping BS-M102 to PO attainment

	PO	PO	РО	PO	PO	PO	РО	PO	РО	PO	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	2	2	2	-	-	1	2	2
CO2	3	3	2	2	2	2	-	-	2	-	1	2
CO3	3	3	3	2	2	-	2	-	2	1	-	1
CO4	3	3	2	2	3	2	-	-	-	-	2	2
CO5	3	3	2	2	2	2	1	-	1	1	2	1
Avg	3	3	2.4	2	2.2	2	1.67	-	1.67	1	1.75	1.6

Syllabus (BS-M102)

Module 1: Calculus (Integration) [8L]

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

Module 2: Calculus (Differentiation) [6L]

Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.

Module 3: Sequence and Series [11L]

Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions; Fourier series: Half range sine and cosine series, Parseval's theorem.

Module 4: Multivariate Calculus [9L]

Department of Computer Science and Engineering

Limit, continuity and partial derivatives, Directional derivatives, Total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, Curl and Divergence.

Module 5: Matrices [8L]

Inverse and rank of a matrix, Rank-nullity theorem; System of linear equations; Symmetric, Skew-symmetric and Orthogonal matrices; Determinants; Eigenvalues and Eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.

Learning Resources:

1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.

2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.

3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.

4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.

5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.

6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, NewDelhi.

ES-EE101: Basic Electrical Engineering

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

CO'S	Statement
CO1	To describe fundamentals of DC and AC circuits
CO2	To explain the operating principle of transformer
CO3	To illustrate construction, working of Electrical Machines
CO4	To classify different power converters and installation process

Department of Computer Science and Engineering

JIS GROUP

CO-PO Mapping

CO & PO Mapping ES-EE101 to PO attainment

Co	РО	РО	РО	РО	РО	РО	PO	Р	PO	Р	Р	РО
s	1	2	3	4	5	6	7	0	9	0	0	12
								8		10	11	
CO 1	3	3	2	2	2	2	3	-	2	-	-	3
CO 2	3	3	3	2	2	2	3	-	2	-	-	3
CO 3	3	2	3	2	2	2	3	-	2	-	-	3
CO 4	3	2	2	2	2	2	3	-	2	-	-	3
Av	3.0	2.5	2.5	3.0	2.0	2.0	3.0	-	2.0	-	-	3.0
g	0	0	0	0	0	0	0		0			0

Syllabus (ES-EE101)

Module 1: DC Circuits

Electrical circuit elements (R, L and C), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

Module 2: AC Circuits

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.

Module 3: Transformers

Department of Computer Science and Engineering

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Module 4: Electrical Machines

Generation of rotating magnetic fields, Construction and working of a threephase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor. Construction and working of synchronous generators.

Module 5: Power Converters

DC-DC buck and boost converters, duty ratio control. Single-phase and three-phase voltage source inverters; sinusoidal modulation.

Module 6: Electrical Installations

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

1. Ritu Sahdev, Basic Electrical Engineering, Khanna Book Publishing Co. (P) Ltd., Delhi.

2. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.

3. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.

4. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.

E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
 V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

BS-CH191: Chemistry-I Lab

Course Outcome (CO)

On successful completion of the learning sessions of the course, the learner will be able to:

	COURSE OUTCOMES (COs)												
CODE	DESCRIPTION												
C01	Analyse sample by apply instruments like viscometer, pH- meter, Conductometer, Potentiometer etc to achieve high accuracy.												
CO2	Analyse inorganic salts by semi-micro techniques												
CO3	Analyse quantitative chemicals present in different samples												

CO-PO Mapping

Co & PO Mapping BS-CH191 to PO attainment

	РО	PO	РО	PO	PO	PO	РО	PO	PO	PO	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	3	3	2	2	-	3	2	1	1
CO2	1	3	3	3	-	1	2	-	3	2	2	2
CO3	3	3	3	3	3	2	1	1	2	2	2	2
Avg	2.3	3	2.6	3	3	1.6	1.6	1	2.6	2	1.6	1.6

Syllabus

1. Conductometric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution

2. pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution

3. Determination of dissolved oxygen present in a given water sample.

4. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)

- 5. Determination of surface tension and viscosity
- 6. Thin layer chromatography
- 7. Ion exchange column for removal of hardness of water
- 8. Determination of the rate constant of a reaction
- 9. Determination of cell constant and conductance of solutions
- 10. Potentiometry determination of redox potentials and emfs
- 11. Saponification/acid value of an oil
- 12. Chemical analysis of a salt

13. Determination of the partition coefficient of a substance between two immiscible liquids

14. Adsorption of acetic acid by charcoal

15. Use of the capillary viscosimeters to the demonstrate of the isoelectric pointas the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg

N.B.: Choose 10 experiments from the above 15

- 1. Advance Practical Chemistry by Subhas C Das, Sarat Book House
- 2. A test book of Macro and Semimicro qualitative Inorganic Analysis by I. Vogel

BS-PH191: Physics Laboratory

Course Outcome (CO)

On successful completion of the learning sessions of the course, the learner will be able to:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
CO1	Observe and read data in slide calliper's, screw gauge. Calculate different modulus of elasticity to apply basic knowledge Physics of Elasticity and apply viscosity principle of streamline motion of water to calculate its viscosity coefficient required in fluid mechanics.
CO2	Operate optical instruments to illustrate physical properties of light and to observe spectral lines of light to verify medium specific characteristics. Calculate Rydberg constant by studying Hydrogen spectrum to visualize visible spectra and to assess this empirical fitting parameter as a fundamental physical constant.
CO3	Determine Band Gap and Hall coefficient of a given intrinsic semiconductor and distinguish between different intrinsic semiconductors. Determine the dielectric constant of different capacitors to correlate their usage like insulator and limitation of their usage as a dielectric material.

	Determine	Planck's	constant	and	Stefan's	constant		
CO4	applying modern Physics.							

CO-PO Mapping

CO-PO Mapping BS-PH191 to PO attainment

	PO	РО	PO	PO	РО	РО	РО	РО	PO	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	3	2	3	-	-	2	-	3	-	-	3
CO2	3	3	3	3	-	-	2	-	3	-	-	3
CO3	3	3	3	3	-	-	3	-	3	-	-	3
CO4	3	3	-	3	-	-	-	-	3	-	-	3
AVG	3	3	2.67	3	-	-	2.33	-	3	-	-	3

Syllabus

Experiments in Optics

1. Determination of dispersive power of the material of a prism

2. Determination of wavelength of a monochromatic light by Newton's

ring

3. Determination of wavelength of a monochromatic light by Fresnel's biprism

4. Determination of wavelength of the given laser source by diffraction method

Electricity & Magnetism experiments

- 1. Determination of thermo electric power of a given thermocouple.
- 2. Determination of specific charge (e/m) of electron by J.J. Thompson's method.
- 3. Determination of dielectric constant of a given dielectric material.
- 4. Determination of Hall coefficient of a semiconductor by four probe method.
- 5. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.
- 6. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance.
- 7. Determination of unknown resistance using Carey Foster's bridge
- 8. Study of Transient Response in LR, RC and LCR circuits using expeyes
- 9. Generating sound from electrical energy using expeyes

Experiments in Quantum Physics

- 1. Determination of Stefan-Boltzmann constant.
- 2. Determination of Planck constant using photocell.
- 3. Determination of Lande-g factor using Electron spin resonance spectrometer.
- 4. Determination of Rydberg constant by studying Hydrogen spectrum.
- 5. Determination of Band gap of semiconductor.
- 6. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

Department of Computer Science and Engineering

Miscellaneous experiments

- 1. Determination of Young's modulus of elasticity of the material of a bar by the method of flexure
- 2. Determination of bending moment and shear force of a rectangular beam of uniform cross-section
- 3. Determination of modulus of rigidity of the material of a rod by static method
- 4. Determination of rigidity modulus of the material of a wire by dynamic method
- 5. To determine the moment of inertia of a body about an axis passing through its centre of gravity and to determine the modulus of rigidity of the material of the suspended wire
- 6. Determination of coefficient of viscosity by Poiseulle's capillary flow method

ES-EE191: Basic Electrical Engineering

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

CO1	Identify different instruments and cut section of different machine
CO2	Describe the steady -state and transient behavior of RLC circuits.
CO3	Calculate the power of 3-ph system by two wattmeter
CO4	Analyze different characteristics of transformer & DC machines

CO-PO Mapping

Co & PO Mapping ES-EE191 to PO attainment

COs	PROGRAM OUTCOMES(POs)												
	Р	Р	Р	Р	Р	Р	Р	Р	Р	РО	РО	PO	
	01	O2	O3	O4	05	06	O7	08	09	10	11	12	
CO1	3	2	2	2	2	-	3	-	2	-	-	3	
CO2	3	2	2	2	2	-	3	-	2	-	-	3	
CO3	3	2	2	2	2	-	3	-	2	-	-	3	

Department of Computer Science and Engineering

CO4	3	2	2	2	2	-	3	-	2	-	-	3
AVG	3	2	2	2	2	-	3	-	2	-	-	3

Syllabus (ES-EE191)

Name of the Experiment Performed:

1. First activity: Introduction to basic safety precautions and mentioning of the do's and Don'ts. Noting

down list of experiments to be performed, and instruction for writing the laboratory reports by the

students. Group formation. Students are to be informed about the modalities of evaluation.

- 2. Introduction and uses of following instruments:
- (a) Voltmeter
- (b) Ammeter
- (c) Multimeter
- (d) Oscilloscope

Demonstration of real life resistors, capacitors with colorcode , inductors and autotransformer.

3. Demonstration of cut-out sections of machines: DC machine, Induction machine, Synchronous

machine and single phase induction machine.

4. Calibration of ammeter and Wattmeter.

5. Determination of steady state and transient response of R-L, R-C and R-L-C circuit to a step change in

voltage.

6. Determination of steady state response of R-L and R-C and R-L-C circuit and calculation of

impedance and power factor.

7. Determination of resonance frequency and quality factor of series and parallel R-L-C circuit.

8. (a) Open circuit and short circuit test of a single-phase transformer

(b) Load test of the transformer and determination of efficiency and regulation

9. Demonstration of three phase transformer connections. Voltage and current relationship, phase shifts

between the primary and secondary side.

10. Measurement of power in a three phase unbalanced circuit by two wattmeter method.

11. Determination of Torque –Speed characteristics of separately excited DC motor.

12. Determination of Torque speed characteristics and observation of direction reversal by change of

phase sequence of connection of Induction motor.

13. Determination of operating characteristics of Synchronous generator.

14. Demonstration of operation of (a) DC-DC converter (b) DC-AC converter (c) DC-AC converter for

speed control of an Induction motor

15. Demonstration of components of LT switchgear

ES-ME191: Engineering Graphics & Design

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

CO1	Learn basics of drafting and use of drafting tools which develops the fundamental skills of industrial drawings.
CO2	Demonstrate engineering scales, dimensioning, and various geometric curves necessary to understand design of machine elements.
CO3	Understand projection of line, surface, and solids to create the knowledge base of orthographic and isometric view of structures and machine parts.
CO4	Apply computer aided drafting useful to share the design model to different section of industries as well as for research & development.

CO-PO-Mapping

Co & PO Mapping ES-ME191 to PO attainment

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	2	2	-	-	-	-	2	2
CO2	2	2	3	2	2	-	-	-	-	-	2	2
CO3	2	3	3	2	3	2	-	-	-	-	2	3
CO4	3	2	2	2	2	2	-	-	-	-	2	2
AVG	2.5	2.5	2.5	2.00	2.25	2	-	-	-	-	2	2.25

Syllabus (BS-M101)

INTRODUCTION TO ENGINEERING DRAWING

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Different types of lines and their use; Drawing standards and codes.

LETTERING, DIMENSIONING, SCALES

Plain scale, Diagonal scale and Vernier Scales.

GEOMETRICAL CONSTRUCTION AND CURVES

Construction of polygons, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid, Involute, Archemedian Spiral.

PROJECTION OF POINTS, LINES, SURFACES

Principles of Orthographic Projections-Conventions - 1st and 3rd angle projection, Projections of Points and lines inclined to both planes; Projections of planes (Rectangle, pentagon, Hexagon etc.) inclined Planes -Auxiliary Planes.

PROJECTION OF REGULAR SOLIDS

Regular solids inclined to both the Planes- Auxiliary Views; Draw simple annotation, dimensioning and scale (Cube, Pyramid, Prism, Cylinder, Cone).

COMBINATION OF REGULAR SOLIDS, FLOOR PLANS

Regular solids in mutual contact with each other like Spheres in contact with cones standing on their base. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.

ISOMETRIC PROJECTIONS

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

SECTIONS AND SECTIONAL VIEWS OF RIGHT ANGULAR SOLIDS

Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;

Department of Computer Science and Engineering

Draw the sectional orthographic views of geometrical solids, objects from industry and dwellings (foundation to slab only)

OVERVIEW OF COMPUTER GRAPHICS, CUSTOMISATION& CAD DRAWING

listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids]; Set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles:

ANNOTATIONS, LAYERING & OTHER FUNCTIONS

Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project

Department of Computer Science and Engineering

the true shape of the sectioned surface; Drawing annotation, Computer aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises. Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi views of dwelling;

DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT

and topology of engineered components: creation of Geometry engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM)

1. Pradeep Jain, Ankita Maheswari, A.P. Gautam, Engineering Graphics & Design, Khanna Publishing House

2. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House

3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication

4. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education

5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers

6. Corresponding set of CAD Software Theory and User Manuals

ES-ME191: Workshop/ Manufacturing

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

CO1	Identify and operate various hand tools related to variety of manufacturing operations
CO2	Fabricate simple components with their own hands.
CO3	Apply practical knowledge of the dimensional accuracies and tolerances applicable for different manufacturing processes.
CO4	Produce small devices of their interest in project or research purpose.

CO-PO Mapping

Co & PO Mapping ES-ME191 to PO attainment

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	2	2	-	-	-	-	2	2
CO2	2	3	3	2	2	2	-	-	-	-	2	2
CO3	3	2	2	2	2	2	-	-	-	-	2	3
CO4	2	3	3	2	2	2	-	-	-	-	2	2
AVG	2.5	2.5	2.5	2	2	2	-	-	-	-	2	2.25

Syllabus (ES-ME191)

Detailed contents:

1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods

- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical & Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing
- (ii) Workshop Practice:

Machine shop

Typical iobs that may be made in this practice module: To from mild steel rod in make а pin а а lathe. To make rectangular and vee slot in a block of cast iron or mild steel in a shaping and / or milling machine.

Fitting shop

Typical jobs that may be made in this practice module: To make a Gauge from MS plate.

Carpentry

Typical made in this jobs that may be practice module: To make wooden joints and/or pattern like. а or Welding shop

Typical jobs that may be made in this practice module: ARC WELDING

Department of Computer Science and Engineering

To join two thick (approx 6mm) MS plates by manual metal arc welding.

GAS WELDING: To join two thin mild steel plates or sheets by gas welding

Casting

Typical jobs that may be made in this practice module: One/ two green sand moulds to prepare, and a casting be demonstrated.

Smithy

Typical jobs that may be made in this practice module: A simple job of making a square rod from a round bar or like. **Plastic moulding & Glass cutting**

Typical jobs that may be made in this practice module:

For plastic moulding, making at least one simple plastic component should be made. For glass cutting, three rectangular glass pieces may be cut to make a kaleidoscope using a black colour diamond cutter, or similar other components may be made.

Electrical & Electronics

Familiarization with LT switchgear elements, making its sketches and noting down its specification. Kitkat fuse, Glass cartridge fuse, Plastic fuse holders (optional), Iron clad isolators, MCB style isolators, Single phase MCB, Single-phase wire, wiring cable. Demonstration of domestic wiring involving two MCB, two piano key switches, one incandescent lamp, one LED lamp and plug point. Simple wiring exercise to be executed to understand the basic electrical circuit. Simple soldering exercises to be executed to understand the basic process of soldering. Fabrication of a single-phase full wave rectifier with a step down transformer using four diodes and electrolytic capacitor and to find its voltunderstand characteristics basic ampere to electronic circuit fabrication.

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

Books

- Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop
- 2. Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Kalpakjian S. and Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.
- Gowri P. Hariharan and A. Suresh Babu,"Manufacturing Technology – I" Pearson Education,2008.

JIS GROUP

2st Semester/1st Yr

BS-CH201: Chemistry-I

Course Outcome (CO)

On successful completion of the learning sessions of the course, the learner will be able to:

	COURSE OUTCOMES (COs)											
CODE	DESCRIPTION											
CO1	Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces and list major chemical reactions that are used in the synthesis of molecules											
CO2	Rationalise bulk properties and processes using thermodynamic considerations											
CO3	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques											
CO4	Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.											

CO-PO Mapping

Co & PO Mapping BS-CH201 to PO attainment

	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	3	2	3	2	1	2	1	1	2	2
CO2	3	3	3	2	3	3	-	1	1	-	-	3
CO3	3	3	3	3	2	2	2	1	2	3	3	1
CO4	3	3	3	3	1	3	1	-	1	-	1	1
Avg	2.75	3	3	2.5	1.5	2.25	1.33	1.33	1.25	2.0	2.0	1.75

Syllabus(BS-CH201)

<u>Unit I</u>: Atomic and molecular structure

Schrodinger equation. Particle in a box solutions and their applications for simple sample. Molecular orbitals of diatomic molecules (e.g.H₂). Energy level diagrams of diatomic. π -molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Department of Computer Science and Engineering

Unit II: Spectroscopic techniques and applications

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering

<u>Unit III</u>: Intermolecular forces and potential energy surfaces

Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena.

Unit IV: Use of free energy in chemical equilibria

First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.

Unit V: Periodic properties

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic

configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries

<u>Unit VI</u>: Stereochemistry

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

<u>Unit VII</u>: Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

Books

Learning Resources:

- 1. Engineering Chemistry, Satyaprakash, Khanna Book Publishing, Delhi
- 2. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 3. Physical Chemistry, by P. W. Atkins
- 4. Spectroscopy of Organic Compounds, by P.S.Kalsi, New Age International Pvt Ltd Publishers
- 5. Physical Chemistry, P. C. Rakshit, Sarat Book House
- Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition

BS-PH201: Physics

Course Outcome (CO)

On successful completion of the learning sessions of the course, the learner will be able to:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
CO1	Learn basic concepts of quantum physics, simple quantum mechanics calculations; Macrostate, Microstate, Density of states, Qualitative treatment of MB, FD and BE statistics.
CO2	Solve problems including constraints & friction. Basic ideas of vector calculus and partial differential equations. Harmonic oscillator. Damped harmonic motion forced oscillations and Resonance. Motion of a rigid body.
CO3	Learn the application of wave properties of light Interference, Diffraction and Polarization; Lasers: Principles and working of laser
CO4	Learn Maxwell's equations. Polarization, Dielectrics; Magnetization, magnetic-hysteresis.

Department of Computer Science and Engineering

CO-PO Mapping

CO-PO Mapping BS-PH201 to PO attainment

	РО	PO	РО	РО	PO	РО						
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	3	3	2	2	1	2	-	-	2	1	2
CO 2	3	3	3	2	2	1	2	-	-	2	1	2
CO 3	3	3	3	3	2	1	2	-	-	2	1	2
CO 4	3	3	3	2	2	1	2	-	-	2	1	2

Syllabus

UNIT 1. Mechanics

Problems including constraints & friction. Basic ideas of vector calculus and partial differential equations. Potential energy function F = -grad V, equipotential surfaces and meaning of gradient. Conservative and non-conservative forces. Conservation laws of energy & momentum. Non-inertial frames of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector. Moment of inertia.

Department of Computer Science and Engineering

UNIT 2. Optics

Distinction between interference and diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits (only the expressions for max;min, & intensity and qualitative discussion of fringes); diffraction grating(resolution formulae only), characteristics of diffraction grating and its applications.

Polarization: Introduction, polarization by reflection, polarization by double reflection, scattering of light, circular and elliptical polarization, optical activity.

Lasers: Principles and working of laser – population inversion, pumping, various modes, threshold population inversion with examples

UNIT 3. Electromagnetism and Dielectric Magnetic Properties of Materials

Maxwell's equations, Polarization, permeability and dielectric constant, polar and non-polar

Dielectrics, internal fields in a solid, Clausius-Mossotti equation (expression only), applications of dielectrics.

Magnetization: permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications.

UNIT 4. Quantum Mechanics

Introduction to quantum physics, black body radiation, explanation using the photon concept, Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves, uncertainty principle, Schrodinger

wave equation, particle in box, quantum harmonic oscillator, hydrogen atom.

UNIT 5. Statistical Mechanics

Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Books

Learning Resources:

- 1. Introduction to Electrodynamics, David J. Griffiths, Pearson Education India Learning Private Limited
- 2. Principles of Physics, 10ed, David Halliday, Robert Resnick Jearl Walker, Wiley
- 3. Electricity, Magnetism, and Light, Wayne M. Saslow, Academic Press
- Engineering Mechanics (In SI Units) (SIE), S. Timoshenko, D.H.
 Young, J.V. Rao, Sukumar Pati , McGraw Hill Education
- 5. Classical mechanics, Narayan Rana, Pramod Joag, McGraw Hill Education
- 6. Introduction to Classical Mechanics, R Takwale, P Puranik, McGraw Hill Education
- 7. Engineering Mechanics, M.K. Harbola, Cengage India
- An Introduction to Mechanics (SIE), David Kleppner, Robert Kolenkow, McGraw Hill Education
- 9. Principles of mechanics, John L. Synge and Byron A. Griffith, New York, McGraw-Hill

- Mechanics (Dover Books on Physics), J. P. Den Hartog, Dover Publications Inc.
- 11. Engineering Mechanics: Dynamics, L.G. Kraige J.L. Meriam, Wiley
- 12. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Robert Eisberg, Robert Resnick, Wiley
- 13. Introduction to Quantum Mechanics, J. Griffiths David , Pearson Education
- Modern Quantum Mechanics, J. J. Sakurai, Cambridge University Press
- 15. Optics, Hecht, Pearson Education
- 16. Optics, Ghatak, McGraw Hill Education India Private Limited
- 17. Fundamentals of Statistical and Thermal Physics, Reif, Sarat Book Distributors
- 18. Statistical Mechanics, Pathria, Elsevier
- 19. Statistical Physics, L.D.Landau , E.M. Lifshitz, Butterworth-Heinemann

BS-M201: Mathematics - IIA

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
CO 1	Learn the ideas of probability and random variables, calculate probabilities using conditional probability, rule of total probability and Bayes' theorem.
CO 2	Illustrate the Various discrete and continuous probability distribution with their properties and their applications in physical and engineering environment.
CO 3	Understand the basic ideas of statistics with different characterization of a univariate and bivariate data set.
CO 4	Apply statistical tools for analyzing data samples and drawing inference on a given data set.

Department of Computer Science and Engineering

CO-PO Mapping

CO & PO Mapping BS-M201 to PO attainment

	PO	PO	РО	РО	РО	РО	РО	PO	PO	PO	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	1	1	-	-	-	-	-	2
CO2	3	3	2	1	2	2	2	-	2	-	1	2
CO3	3	3	1	2	2	-	1	-	2	-	2	1
CO4	3	3	2	2	3	2	-	-	-	-	1	2
Avg	3	3	2.67	2.33	2.67	1.67	1.5	-	2	-	1.33	1.75

Syllabus (BS-M201)

Module 1: Basic Probability [11L]

Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the Multinomial distribution, Poisson approximation to the Binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality.

Module 2: Continuous Probability Distributions [4L]

Continuous random variables and their properties, Distribution functions and densities, Normal, Exponential and Gamma densities.

Department of Computer Science and Engineering

Module 3: Bivariate Distributions [5L]

Bivariate distributions and their properties, distribution of sums and quotients, Conditional densities, Bayes' rule.

Module 4: Basic Statistics [8L]

Measures of Central tendency, Moments, Skewness and Kurtosis, Probability distributions: Binomial, Poisson and Normal and evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation.

Module 5: Applied Statistics [8L]

Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

Module 6: Small samples [4L]

Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chi-square test for goodness of fit and independence of attributes.

Learning Resources:

1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.

2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons

3. S. Ross, A First Course in Probability, Pearson Education India

4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley.

5. John E. Freund, Ronald E. Walpole, Mathematical Statistics, Prentice Hall.

- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 7. N.G. Das, Statistical Methods (Combined Volume), Tata-McGraw Hill.

HMHU 201: ENGLISH

Course Outcome (CO)

Student will be able to:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
CO 1	Revise the basic grammar of English language.
CO 2	Learn appropriate use of English language to enhance knowledge on building vocabulary and framing sentences.
CO 3	Learn and incorporate sensible style in Technical writing.
CO 4	Acquire proficiency in English language for comprehensive excellence in reading, listening, writing and speaking.

CO-PO Mapping

Co & PO Mapping HMHU201 to PO attainment

	PO	РО	РО	РО	PO	РО	PO	РО	РО	РО	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	2	-	-	-	-	-	-	1	3	-	2
CO2	-	2	-	1	-	1	-	-	2	3	-	2
CO3	-	2	-	1	-	1	1	2	1	3	-	2
CO4	-	2	-	1	-	1	1	1	2	3	1	2
Avg	-	2	-	1	-	1	1	1.5	1.5	3	1	2

Syllabus (HMHU201)

<u>Syllabus</u>

MODULE I

Vocabulary Building 1.1

The concept of Word Formation: Compounding, Backformation, Clipping, Blending. 1.2 Root words from foreign languages and their use in English 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives. 1.4 Synonyms, antonyms, and standard abbreviations: Acronyms

MODULE II

2. Basic Writing Skills 2.1 Sentence Structures & Types: Simple, Compound, Complex 2.2 Use of phrases and clauses in sentences: Transformation of sentences, active, passive, narration2.3 Importance of proper punctuation 2.4 Creating coherence: Arranging paragraphs & Sentences in logical order 2.5 Creating Cohesion: Organizing principles of paragraphs in documents 2.6 Techniques for writing precisely

MODULE III

Identifying Common Errors in Writing 3.1 Subject-verb agreement
 Noun-pronoun agreement
 Misplaced modifiers
 Articles
 Prepositions
 Redundancies
 Clichés

MODULE IV

4. Nature and Style of sensible Writing 4.1 Describing 4.2 Defining 4.3 Classifying 4.4 Providing examples or evidence 4.5 Writing introduction and conclusion

MODULE V

5. Writing Practices 5.1 Comprehension 5.2 Précis Writing 5.3 Essay Writing 5.4 Business Letter, Cover Letter & CV; E-mail

Books

Learning Resources:

- 1. Kulbushan Kumar, R S Salaria,Effective Communication Skills, Khanna Publishing House, Delhi.
- 2. Practical English Usage. Michael Swan. OUP. 1995.
- 3. Remedial English Grammar. F.T. Wood. Macmillan.2007
- 4. On Writing Well. William Zinsser. Harper Resource Book. 2001
- **5.** Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- **6.** Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- 7. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- 8. Universal English Prof. Prasad Kataria Publications, 2019.
- **9.** "Communication Skills for Professionals"-NiraKonar, Prentice Hall of India 2nd edition, NewDelhi,2011.
- **10.** Gajendra Singh Chauhan, SmitaKashiramka and L. Thimmesha. Functional English. Cengage, 2019.

ES-CS201: Programming for Problem Solving

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

COs	CO Statement
CO1	Students will be able to describe the meaning of system of numbers, logic gates and the basic anatomy of a
CO2	Computer. Students will be able to understand the inherent meaning of the basic elements of C Programming Language like; constants, variables, operators, operator precedence etc., and identify the use of data types and C statements and classify the statements.
CO3	Students will be able to organize the statements in appropriate order to prepare a complete program that solves a specific problem and analyze a program to point out the bugs that might be present in it and change it to achieve the goal.
CO4	Students will be able to construct the final program and create the executable module for execution purpose.

CO-PO Mapping

CO & PO Mapping ES-CS201 to PO attainment

Programming for Problem Solving Programming												
						PO	D'S					
CO'S	PO 1	PO 2	P 03	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	_	-	3	2	1	-	2	3	1	_	2	2
CO2	1	3	2	2	_	2	_	3	2	3	2	2
CO3	3	2	1	2	_	2	3	2	2	2	2	3
CO4	3	2	3	3	2	2	2	1	2	2	3	_
Avera ge	2.3 3	2.3 3	2.2 5	2.2 5	1.5	2.0 0	2.3 3	2.2 5	2.3 3	2.3 3	2.2 5	2.3 3

Syllabus (ES-CS201)

Unit 1: Introduction to Programming

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.)

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart/Pseudocode with examples.

From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code-

Unit 2: Arithmetic expressions and precedence

Unit 3: Conditional Branching and Loops

Writing and evaluation of conditionals and consequent branching

Unit 4: Arrays

Department of Computer Science and Engineering

Arrays (1-D, 2-D), Character arrays and Strings

Unit 5: Basic Algorithms

Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

Unit 6: Function

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

Learning Resources:

- 1. R. S. Salaria, Computer Concepts and Programming in C, Khanna Publishers
- 2. 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 3. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
- 4. 4. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall ofIndia

Department of Computer Science and Engineering

BS-PH291: Physics-I Lab

Course Outcome (CO)

On successful completion of the learning sessions of the course, the learner will be able to:

COURSE OUTCOMES (COs)								
CODE	DESCRIPTION							
CO1	Ability to increase power of observation and reasoning and to think and work with precision and accuracy in daily life. Use Slide callipers and screw gauge, familiar with concept of Band gap of semiconductor and dielectric constant							
CO2	Get the opportunity to verify the validity of various laws taught in curriculum, Familiar with dispersive power of the material of a prism, Newton's ring, Planck constant							
CO3	Familiar with Hall coefficient of a semiconductor Electron spin resonance spectrometer, Young's modulus, Poiseulle's capillary flow method for viscosity measurement.							

Department of Computer Science and Engineering

CO-PO Mapping

CO-PO Mapping BS-PH291 to PO attainment

	PO	PO	PO	PO	PO	PO	РО	PO	РО	РО	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	3	3	1	2	-	-	2	1	2
CO2	3	3	3	3	3	1	2	-	-	2	1	2
CO3	3	3	3	3	3	1	2	-	-	2	1	2

Syllabus

Experiments in Optics

1. Determination of dispersive power of the material of a prism

2. Determination of wavelength of a monochromatic light by Newton's

ring

3. Determination of wavelength of a monochromatic light by Fresnel's bi-

prism

4. Determination of wavelength of the given laser source by diffraction

method

Electricity & Magnetism experiments

- 1. Determination of thermo electric power of a given thermocouple.
- 2. Determination of specific charge (e/m) of electron by J.J. Thompson's method.
- 3. Determination of dielectric constant of a given dielectric material.

- 4. Determination of Hall coefficient of a semiconductor by four probe method.
- 5. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.
- 6. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance.
- 7. Determination of unknown resistance using Carey Foster's bridge
- 8. Study of Transient Response in LR, RC and LCR circuits using expeyes
- 9. Generating sound from electrical energy using expeyes

Experiments in Quantum Physics

- 1. Determination of Stefan-Boltzmann constant.
- 2. Determination of Planck constant using photocell.
- 3. Determination of Lande-g factor using Electron spin resonance spectrometer.
- 4. Determination of Rydberg constant by studying Hydrogen spectrum.
- 5. Determination of Band gap of semiconductor.
- 6. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

Miscellaneous experiments

- 1. Determination of Young's modulus of elasticity of the material of a bar by the method of flexure
- 2. Determination of bending moment and shear force of a rectangular beam of uniform cross-section

- 3. Determination of modulus of rigidity of the material of a rod by static method
- 4. Determination of rigidity modulus of the material of a wire by dynamic method
- 5. To determine the moment of inertia of a body about an axis passing through its centre of gravity and to determine the modulus of rigidity of the material of the suspended wire

6. Determination of coefficient of viscosity by Poiseulle's capillary flow method

BS-CH291: Chemistry-I Lab

Course Outcome (CO)

On successful completion of the learning sessions of the course, the learner will be able to:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
CO 1	Use modern instrumentation and classical techniques like viscometer, stalagmometer, pH-meter, potentiometer and conductometer etc. to design experiments and to properly record the results of their experiments to achieve high accuracy.
CO 2	Separate the mixture of amino acids by TLC and analysis of chemical salts by qualitatively.
CO 3	Estimate the quantitative analysis of Dissolved oxygen, chloride ion and removal of hardness of water etc. which are required to determine the usability of water used in industries.
CO4	Understand the miscibility of solutes in various solvents required in paint, emulsion and material industries and determine the acid value of an oil, kinetics of oxidation of iodide by hydrogen peroxide.

CO-PO Mapping

CO & PO Mapping BS-CH291 to PO attainment

	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	3	-	3	-	-	3	3	3	-
CO2	3	3	3	3	-	2	-	-	3	2	3	-
CO3	3	3	3	2	-	3	-	-	3	3	2	-
CO4	3	3	3	-	-	-	-	-	3	-	-	-
Avg	3	3	3	2.6	-	2.6	-	-	3	2.6	2.6	-

Syllabus

1. Conductometric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution

2. pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution

3. Determination of dissolved oxygen present in a given water sample.

4. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)

5. Determination of surface tension and viscosity

- 6. Thin layer chromatography
- 7. Ion exchange column for removal of hardness of water
- 8. Determination of the rate constant of a reaction
- 9. Determination of cell constant and conductance of solutions
- 10. Potentiometry determination of redox potentials and emfs
- 11. Saponification/acid value of an oil
- 12. Chemical analysis of a salt

Department of Computer Science and Engineering

13. Determination of the partition coefficient of a substance between two immiscible liquids

14. Adsorption of acetic acid by charcoal

15. Use of the capillary viscosimeters to the demonstrate of the isoelectric pointas the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg

N.B.: Choose 10 experiments from the above 15

Books

- 1. Advance Practical Chemistry by Subhas C Das, Sarat Book House
- 2. A test book of Macro and Semimicro qualitative Inorganic Analysis by I. Vogel

HMHU 291: ENGLISH

Course Outcome (CO)

Student will be able to:

	COURSE OUTCOMES (COs)
CODE	DESCRIPTION
CO1	Get introduced to professional application of English Language with emphasis on listening and speaking skills through language lab aids.
CO2	Practice sessions on pronunciation, intonation, voice modulation, stress, pitch and accent and developing communicative skills with special focus on Group Discussion.
CO3	Master effective reading and writing style through Language Lab aids.
CO4	Ensure proficiency in reading, listening comprehension, technical writing and in speaking.

Department of Computer Science and Engineering

CO-PO Mapping

CO & PO Mapping HMHU291 to PO attainment

	РО	PO	РО	РО	PO	PO	РО	PO	РО	РО	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	-	-	-	1	-	-	-	2	3	-	2
CO2	-	2	-	1	-	1	-	1	3	3	-	2
CO3	-	2	-	1	1	1	1	1	2	3	-	2
CO4	-	2	-	1	1	1	1	1	3	3	-	2
Avg	-	2	-	1	1	1	1	1	2.5	3	-	2

Syllabus (HMHU291)

1) Honing 'Listening Skill' and its sub skills through Language Lab Audio device; 3P

2) Honing 'Speaking Skill' and its sub skills 2P

3)Helping them master Linguistic/Paralinguistic features (Pronunciation/Phonetics/ Voice modulation/ Stress/ Intonation/ Pitch &Accent) of connected speech 2P

4) Honing 'Conversation Skill' using Language Lab Audio –Visual input; Conversational Practice Sessions (Face to Face / via Telephone, Mobile phone & Role Play Mode) 2P

5) Introducing 'Group Discussion' through audio –Visual input and acquainting them with key strategies for success 2P

6) G D Practice Sessions for helping them internalize basic Principles (turn- taking, creative intervention, by using correct body language, courtesies &other soft skills) of GD 4P

Department of Computer Science and Engineering

7) Honing 'Reading Skills' and its sub skills using Visual / Graphics/ Diagrams /Chart Display/Technical/Non Technical Passages Learning Global / Contextual / Inferential Comprehension; 2P8) Honing 'Writing Skill' and its sub skills by using Language Lab Audio –Visual input; Practice Sessions

ES-ME291: Engineering Graphics & Design

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

CO1	Learn basics of drafting and use of drafting tools which develops the fundamental skills of industrial drawings.
CO2	Know about engineering scales, dimensioning and various geometric curves necessary to understand design of machine elements.
001	
CO3	Understand projection of line, surface and solids to create the
	knowledge base of orthographic and isometric view of structures
	and machine
CO4	Become familiar with computer aided drafting useful to share the
	design model to different section of industries as well as for
	6
	research & development.

CO-PO-Mapping

CO & PO Mapping ES-ME291 to PO attainment

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	-	1	2	1	1	1	-	1	-	-	1
CO2	3	-	2	2	-	1	-	-	1	1	1	1
CO3	2	2	2	1	-	1	1	1	1	-	-	1
CO4	1	-	2	2	2	1	-	-	1	1	1	1

Syllabus (ES-ME291)

INTRODUCTION TO ENGINEERING DRAWING

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Different types of lines and their use; Drawing standards and codes.

LETTERING, DIMENSIONING, SCALES

Plain scale, Diagonal scale and Vernier Scales.

GEOMETRICAL CONSTRUCTION AND CURVES

Construction of polygons, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid, Involute, Archemedian Spiral.

PROJECTION OF POINTS, LINES, SURFACES

Principles of Orthographic Projections-Conventions - 1st and 3rd angle projection, Projections of Points and lines inclined to both planes; Projections of planes (Rectangle, pentagon, Hexagon etc.) inclined Planes -Auxiliary Planes.

PROJECTION OF REGULAR SOLIDS

Regular solids inclined to both the Planes- Auxiliary Views; Draw simple annotation, dimensioning and scale (Cube, Pyramid, Prism, Cylinder, Cone).

COMBINATION OF REGULAR SOLIDS, FLOOR PLANS

Department of Computer Science and Engineering

Regular solids in mutual contact with each other like Spheres in contact with cones standing on their base. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.

ISOMETRIC PROJECTIONS

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

SECTIONS AND SECTIONAL VIEWS OF RIGHT ANGULAR SOLIDS

Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone; Draw the sectional orthographic views of geometrical solids, objects from industry and dwellings (foundation to slab only)

OVERVIEW OF COMPUTER GRAPHICS, CUSTOMISATION& CAD DRAWING

listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids]; Set up of the drawing page and the printer, including scale settings,

Department of Computer Science and Engineering

Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles;

ANNOTATIONS, LAYERING & OTHER FUNCTIONS

Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, Spatial and section views. visualization exercises. Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi views of dwelling;

DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component

Department of Computer Science and Engineering

manufacture; geometric dimensioning and tolerancing; Use of solid modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM)

1. Pradeep Jain, Ankita Maheswari, A.P. Gautam, Engineering Graphics & Design, Khanna Publishing House

2. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House

3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication

4. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education

5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers

6. Corresponding set of CAD Software Theory and User Manuals

ES-ME291: Workshop/ Manufacturing

On successful completion of the learning sessions of the course, the student will be able to:

CO1	Gain basic knowledge of Workshop Practice and Safety useful for our daily living.
CO2	Identify Instruments of a pattern shop like Hand Saw, Jack Plain,
	Chisels etc and performing operations like such as Marking,
	Cutting etc used in manufacturing processes.
CO3	Gain knowledge of the various operations in the Fitting Shop
	using Hack Saw, various files, Scriber, etc to understand the
	concept of tolerances applicable in all kind of manufacturing.
CO4	Get hands on practice of in Welding and various machining
	processes which give a lot of confidence to manufacture physical
	prototypes in project works.

CO-PO Mapping

Co & PO Mapping ES-ME291 to PO attainment

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
C01	2	1	-	-	-	2	-	1	3	-	1	1
CO2	2	2	1	1	1	1	1	2	1	1	-	-
CO3	2	-	2	-	-	1	-	1	1	1	1	2
CO4	1	1	1	2	1	3	1	3	2	-	-	1

Syllabus (ES-ME291)

Detailed contents:

1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods

- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical & Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing

(ii) Workshop Practice:

Machine shop

Typical jobs be made in this practice module: that may To make а pin from а mild steel rod in lathe. а To make rectangular and vee slot in a block of cast iron or mild steel in a shaping and / or milling machine.

Fitting shop

Typical jobs that may be made in this practice module: To make a Gauge from MS plate.

Carpentry

Typical iobs that may be made in this practice module: To wooden make joints and/or a pattern or like.

Welding shop

Department of Computer Science and Engineering

Typical jobs that may be made in this practice module: ARC WELDING

To join two thick (approx 6mm) MS plates by manual metal arc welding.

GAS WELDING: To join two thin mild steel plates or sheets by gas welding **Casting**

Typical jobs that may be made in this practice module: One/ two green sand moulds to prepare, and a casting be demonstrated.

Smithy

Typical jobs that may be made in this practice module: A simple job of making a square rod from a round bar or like. **Plastic moulding & Glass cutting**

Typical iobs that mav be made in this practice module: For plastic moulding, making at least one simple plastic component should be made. For glass cutting, three rectangular glass pieces may be cut to make kaleidoscope black а using а colour diamond cutter, or similar other components may be made. **Electrical & Electronics**

Familiarization with LT switchgear elements, making its sketches and noting down its specification. Kitkat fuse, Glass cartridge fuse, Plastic fuse holders (optional), Iron clad isolators, MCB style isolators, Single phase MCB, Single-phase wire, wiring cable. Demonstration of domestic wiring involving two MCB, two piano key switches, one incandescent lamp, one LED lamp and plug point. Simple wiring exercise to be executed to understand the basic electrical circuit. Simple soldering exercises to be understand executed to the basic process of soldering. Fabrication of a single-phase full wave rectifier with a step down transformer using four diodes and electrolytic capacitor and to find its volt-

Department of Computer Science and Engineering

ampere characteristics to understand basic electronic circuit fabrication.

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

ES-CS291: Programming for Problem Solving

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

COs	CO Statement
	Students will be able to define the specifications like
CO1	input and output relating to a particular problem and
	describe the algorithm that solves the problem.
	Students will be able to construct each of the modules
CO2	of a program by restating the steps of the algorithm
	using functions in the framework of C language.
CO3	Students will be able to create the program by using the
000	functions and execute the program.
CO4	Students will be able to point out the bugs if any, and
	modify the program to solve the problem.

Department of Computer Science and Engineering

CO-PO Mapping

Co & PO Mapping ES- CS 291 to PO attainment

	Basic Computation & Principles of Computer Programming(CS291)											
		PO'S										
CO'S	PO 1	PO 2	Р О З	Р О 4	PO 5	PO 6	Р О 7	Р О 8	Р О 9	PO1 0	PO1 1	PO1 2
CO1	3	3	2	2	2	3	-	-	-	-	2	2
CO2	2	2	-	2		2	2	2		1	2	2
CO3	2	2	2	3	1	3	2	3	1	1	3	2
CO4	1	1	-	1	1	2	-	1	1	1	1	2
Avg	2	2	2	2	1.3 3	2.5	2	2	1	1	2	2

Syllabus (ES-CS291)

The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.

- Lab1: Familiarization with programming environment
- Lab 2: Simple computational problems using arithmetic expressions
- Lab 3: Problems involving if-then-else structures

Department of Computer Science and Engineering

- Lab 4: Iterative problems e.g., sum of series
- Lab 5: 1D Array manipulation
- Lab 6: Matrix problems, String operations
- Lab 7: Simple functions
- Lab 8 and 9: Programming for solving Numerical methods problems
- Lab 10: Recursive functions
- Lab 11: Pointers and structures
- Lab 12: File operations

3rd Semester

ESC-301: Analog & Digital Electronics

Course Outcome (CO)

Student will be able to:

CO1	Students would be able to evaluate and analyze the circuit designing principles.
CO2	Students would be able to understand the operations of various combinational and sequential circuits.
CO3	Students would be able to design and implement both simple and complex analog and digital systems.

				ESC-301	: Analog	& Digita	Electror	nics				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO1 1	PO 12
CO1	2	3			1	2	1	1	2			2
CO2		2	2		1	2		1	2	1		3
CO3	2	2			1		1	1		1		1
AVG	2	2.33	2		1	2	1	1	2	1		2

Department of Computer Science and Engineering

Syllabus (ESC-301)

Unit	Content	Hrs/Unit
1	Different Classes of Amplifiers - (Class-A, B, AB and C - basic concepts, power, efficiency; Recapitulation of basic concepts of Feedback and Oscillation, Phase	9
	Shift, Wein Bridge oscillators Astable & Monostable Multivibrators; Schimtt Trigger circuits, 555 Timer.	
2	Binary Number System & Boolean Algebra (recapitulation); BCD, ASCII, EBDIC, Gray codes and their conversions; Signed binary number representation with 1's and 2's complement methods, Binary arithmetic, Venn diagram, Boolean algebra	11
	(recapitulation); Representation in SOP and POS forms; Minimization of logic expressions by algebraic method. Combinational circuits - Adder and Subtractor circuits (half & full adder & subtractor); Encoder, Decoder, Comparator, Multiplexer, De- Multiplexer and Parity Generator	
3	Sequential Circuits - Basic Flip-flop & Latch, Flip-flops -SR, JK, D, T and JK Master-slave Flip Flops, Registers (SISO, SIPO, PIPO, PISO) Ring counter, Johnson counter. Basic concept of Synchronous and Asynchronous counters (detail design of circuits excluded), Design of Mod N Counter.	
4.	A/D and D/A conversion techniques – Basic concepts (D/A :R-2-R only [2L] A/D: successive approximation [2L]) Logic families- TTL, ECL, MOS and CMOS - basic concepts. (2L)	6

Books

- 1. Microelectronics Engineering –Sedra & Smith-Oxford.
- 2. Analog Electronics, A.K. Maini, Khanna Publishing House (AICTE Recommended -2018)
- 3. Analog Electronics, L.K. Maheswari, Laxmi Publications (AICTE Recommended -2018)
- 4. Principles of Electronic Devices & circuits—B L Thereja & Sedha— S Chand
- 5. Digital Electronics Kharate Oxford
- 6. Digital Electronics Logic & Systems by J.Bigmell & R.Donovan; Cambridge Learning.
- 7. Digital Logic and State Machine Design (3rd Edition) D.J.Comer, OUP
- 8. Electronic Devices & Circuit Theory Boyelstad & Nashelsky PHI
- 9. Bell-Linear IC & OP AMP—Oxford
- 10. P.Raja- Digital Electronics- Scitech Publications
- 11. Morries Mano- Digital Logic Design- PHI
- 12. R.P.Jain—Modern Digital Electronics, 2/e ,McGraw Hill
- 13. H.Taub & D.Shilling, Digital Integrated Electronics- McGraw Hill.
- 14. D.RayChaudhuri- Digital Circuits-Vol-I & II, 2/e- Platinum Publishers
- 15. Tocci, Widmer, Moss-Digital Systems,9/e-Pearson
- 16. J.Bignell & R.Donovan-Digital Electronics-5/e- Cenage Learning.
- 17. Leach & Malvino—Digital Principles & Application, 5/e, McGraw Hill
- 18. Floyed & Jain- Digital Fundamentals-Pearson.

PCC-CS301: Data Structure & Algorithm

Course Outcome (CO)

Student will be able to:

CO1	Students will be able to understand the basic data structures and their applications.
CO2	Students will be able to apply Linear Data Structure that can be implemented using different data structures.
CO3	Students will be able to analyze the different sorting and searching algorithms mentioned in the course, their implementation and performance analysis.
CO4	Students will be able to construct and evaluate algorithms to solve a problem by choosing an appropriate data structure

	Data Structure & Algorithm (PCC-CS301)													
CO'		PO'S												
CO' S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2		
CO1	3	3	2				2	2	2	3	1	3		
CO2		2		2			2	2			1	3		
CO3	3	2	1	2				2	2	2		2		
CO4	3	2	2	2			2		2	3	1	3		
Avg	3	2.2 5	1.6 6	2			2	2	2		1	2.75		

Department of Computer Science and Engineering

Syllabus (PCC-CS301)

Unit	Content	Hrs/Unit
1	Introduction: Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space tradeoff. Searching: Linear Search and Binary Search Technique sand their complexity analysis.	10
2	Stacks and Queues: ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each types of Queues: Algorithms and their analysis.	9
3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion fromlinked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis. Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and analysis	10

	Sorting and Hashing: Objective and properties of	
	different sorting algorithms: Selection Sort,	
4.	Bubble Sort, Insertion Sort, Quick Sort, Merge	9
	Sort, Heap Sort; Performance and Comparison	
	among all the methods, Hashing. Graph: Basic	
	Terminologies and Representations, Graph search	
	and traversal algorithms and complexity analysis.	

Books

- 1. "Data Structures and Program Design In C", 2/E by Robert L. Kruse, Bruce P. Leung.
- 2. "Data Structure & Algorithms Using C", 5th Ed., Khanna Publishing House (AICTE Recommended – 2018)
- 3. "Fundamentals of Data Structures of C" by Ellis Horowitz, Sartaj Sahni, Susan Anderson- freed.
- 4. "Data Structures in C" by Aaron M. Tenenbaum.
- 5. "Data Structures" by S. Lipschutz.
- 6. "Data Structures Using C" by Reema Thareja.
- 7. "Data Structure Using C", 2/e by A.K. Rath, A. K. Jagadev.
- 8. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
- 9. "Data Structures through C" by Yashwant Kanetkar, BPB Publications.
- 10."Expert Data Structures with C++" by R.B Patel, Khanna Publishing House

PCC-CS302: Computer Organization

Course Outcome (CO)

Student will be able to:

CO1	Analyze the designing process of combinational and sequential circuits.
CO2	Express arithmetic, logic and shift micro operations in symbolic form and their corresponding circuits at a register transfer level and apply it for the design and implementation of ALU.
CO3	Identify the addressing modes used in macro instructions and develop micro code for typical instructions in symbolic form.
CO4	Understand different input output devices and the control circuit.

	Computer Organization (PCC-CS302)													
CO?		PO'S												
CO' S	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2		
CO1														
	2		2	2	2		2	2	1			2		
CO2	2	2						2		1				
CO3		2	2	2	1		2		1	1		2		
CO4	2	2	2		1		2	2	1	1		2		
Avg	2	2	2	2	1.3		2	2	1	1		2		

Department of Computer Science and Engineering

Syllabus (PCC-CS302)

Unit	Content	Hrs/
		Unit
	Basic organization of the stored program	
1	computer and operation sequence for	8
	execution of a program. Role of operating	
	systems and compiler/assembler. Fetch,	
	decode and execute cycle, Concept of	
	operator, operand, registers and storage,	
	Instruction format. Instruction sets and	
	addressing modes. [7L]	
	Commonly used number systems. Fixed	
	and floating point representation of	
	numbers.[1L]	
	Overflow and underflow. Design of adders	
2	- ripple carry and carry look ahead	8
	principles. [3L]	
	Design of ALU. [1L]	
	Fixed point multiplication -Booth's	
	algorithm. [1L] Fixed point division -	
	Restoring and non-restoring algorithms.	
	[2L]	
	Floating point - IEEE 754 standard. [1L]	
3	Memory unit design with special emphasis	10
	on implementation of CPU-memory	
	interfacing. [2L] Memory organization,	
	static and dynamic memory, memory hierarchy, associative memory. [3L] Cache	
	memory, Virtual memory. Data path design	
	for read/write access. [5L]	

Department of Computer Science and Engineering

	Design of control unit - hardwired and	
	microprogrammed control. [3L] Introduction	
4.	to instruction pipelining. [2L]	10
	Introduction to RISC architectures. RISC vs	
	CISC architectures. [2L]	
	I/O operations - Concept of handshaking,	
	Polled I/O, interrupt and DMA. [3L]	
	/ / I - L- J	

Books

- 1. Mano, M.M., "Computer System Architecture", PHI.
- 2. Behrooz Parhami "Computer Architecture", Oxford University Press
- 3. Hayes J. P., "Computer Architecture & Organisation", McGraw Hill,
- 4. Hamacher, "Computer Organisation", McGraw Hill,
- 5. N. senthil Kumar, M. Saravanan, S. Jeevananthan, "Microprocessors and Microcontrollers" OUP
- 6. Chaudhuri P. Pal, "Computer Organisation & Design", PHI,
- 7. P N Basu- "Computer Organization & Architecture", Vikas Pub
- 8. Rajaraman "Computer Organization & Architecture", PHI
- 9. B.Ram "Computer Organization & Architecture", Newage Publications

BSC-301: Mathematics-III (Differential Calculus)

Course Outcome (CO)

On successful completion of the learning sessions of the course, the student will be able to:

COURS	SE OUTCOMES (COs)
CODE	DESCRIPTION
CO1	Learn the methods for evaluating multiple integrals
001	and their applications to different physical problems.
	Understand different techniques to solve first and
CO2	second order ordinary differential equations with its
02	formulation to address the modelling of systems and
	problems of engineering sciences.
	Learn the tools of power series to analyze engineering
CO3	problems and apply the concept of convergence of
005	infinite series in many approximation techniques in
	engineering disciplines.
	Apply the knowledge for addressing the real life
CO4	problems which comprises of several variables or
004	attributes and identify extremum points of different
	surfaces of higher dimensions.
CO5	Use tree and graph algorithms to solve problems

	PO	PO	РО	PO	PO	РО	PO	PO	PO	PO	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3		1	2			2	2	2	1		
CO2		3					2		1	1		
CO3	3	3	1	2			2	2				
CO4		3	1	2				2	2	1		
CO5	3	3	1	2			2	2		1		
Avg	3	3	1	2			2	2	1.6	1		

Department of Computer Science and Engineering

Syllabus (BSC-301)

Unit	Content	Hrs/
		Unit
1	Convergence of sequence and series, tests for convergence, power series, Taylor's series. Series for exponential, trigonometric and logarithmic functions.	8
2	Limit, continuity and partial derivatives, Chain rule, Implicit function, Jacobian, Directional derivatives, Total derivative; Maxima, minima and saddle points; Gradient, curl and divergence and related problems.	7
3	Double and triple integrals (Cartesian and polar), change of order of integration in double integrals, Change of variables (Cartesian to polar). Theorems of Green, Gauss and Stokes (Statement only) and related problems.	8
4.	First Order Differential Equation, Exact, Linear and Bernoulli's equations, Equations of first order but not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's form, general & singular solution. [5L] Second order linear differential equations with constant coefficients, D-operator method, method of variation of parameters, Cauchy-Euler equation. [4L]	9
5	Basic Concept of graph, Walk, Path Circuit, Euler and Hamiltonian graph, diagraph. Matrix Representation: Incidence & Adjacency matrix. Tree: Basic Concept of tree, Binary tree, Spanning Tree, Kruskal and Prim's algorithm for finding the minimal spanning tree.	8

Department of Computer Science and Engineering

Books

- 1. Higher Algebra, S. K. Mapa, Levant Books.
- 2. Advanced Higher Algebra, Chakravorty and Ghosh, U N Dhar Pvt. Ltd.
- 3. Co-ordinate Geometry, S. L. Loney
- 4. Integral Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.
- 5. Differential Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.
- 6. Advanced Engineering Mathematics, E Kreyszig
- Advanced Engineering Mathematics, Chandrika Prasad & Reena Garg, Khanna Publishing House (AICTE Recommended Textbook -2018)

HSMC-301: Economics for Engineers

Course Outcome (CO)

Student will be able to:

CO1	Make different economic decisions and estimate engineering costs by applying different cost estimation models.
CO2	Create cash flow diagrams for different situations and use different interest formulae to solve associated problems. Take decisions regarding different engineering projects by using various criteria like rate of return analysis, present worth analysis, cost-benefit analysis etc.
CO3	Incorporate the effect of uncertainty in economic analysis by using various concepts like expected value, estimates and simulation
CO4	Understand the concepts of depreciation, replacement analysis, scope of Finance and the role of financial planning and management, the process of inflation and use different price

Department of Computer Science and Engineering

CO-PO Mapping

	РО	РО	РО	РО	РО	РО	PO	РО	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2		1		1			1	1	2	3	2
CO2	2	2			1				1	3		2
CO3	2		1		1			1		2	3	2
CO4	2	2	1					1	1	3	3	
Avg	2	2	1		1			1	1	2.5	3	2

Syllabus (PCC-CS301)

Unit	Content							
		Unit						
1	 Economic Decisions Making – Overview, Problems, Role, Decision making process. Engineering Costs & Estimation – Fixed, Variable, Marginal & Average Costs, Sunk Costs, Opportunity Costs, Recurring And Nonrecurring Costs, Incremental Costs, Cash Costs vs Book Costs, Life-Cycle Costs; Types Of Estimate, Estimating Models - Per-Unit Model, Segmenting Model, Cost Indexes, Power-Sizing Model, Improvement & Learning Curve, Benefits. 	9						

2	 Cash Flow, Interest and Equivalence: Cash Flow – Diagrams, Categories & Computation, Time Value of Money, Debt repayment, Nominal& Effective Interest. Cash Flow & Rate of Return Analysis – Calculations, Treatment of Salvage Value, Annual Cash Flow Analysis, Analysis Periods; Internal Rate of Return, Calculating Rate of Return, Incremental Analysis; Best Alternative Choosing an Analysis Method, Future Worth Analysis, Benefit-Cost Ratio Analysis, Sensitivity and Breakeven Analysis. Economic Analysis In The Public Sector -Quantifying And Valuing Benefits & drawbacks. Inflation and Price Change – Definition, Effects, 	9
3	 Inflation and Price Change – Definition, Effects, Causes, Price Change with Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates. Present Worth Analysis: End-Of-Year Convention, Viewpoint Of Economic Analysis Studies, Borrowed Money Viewpoint, Effect Of Inflation & Deflation, Taxes, Economic Criteria, Applying Present Worth Techniques, Multiple Alternatives. Uncertainty In Future Events - Estimates and Their Use in Economic Analysis, Range Of Estimates, Probability, Joint Probability Distributions, Expected Value, Economic Decision Trees, Risk, Risk vs Return, Simulation, Real Options. 	9
4.	8. Depreciation - Basic Aspects, Deterioration & Obsolescence, Depreciation And Expenses, Types Of Property, Depreciation Calculation Fundamentals, Depreciation And Capital Allowance Methods, Straight-Line Depreciation Declining Balance	9

Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances.
9. Replacement Analysis - Replacement Analysis Decision Map, Minimum Cost Life of a New Asset, Marginal Cost, Minimum Cost Life Problems.
10. Accounting – Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.

Books

- 1. James L.Riggs, David D. Bedworth, Sabah U. Randhawa : Economics for Engineers 4e , Tata McGraw-Hill
- 2. Donald Newnan, Ted Eschembach, Jerome Lavelle: Engineering Economics Analysis, OUP
- 3. John A. White, Kenneth E. Case, David B. Pratt : Principle of Engineering Economic Analysis, John Wiley
- 4. Sullivan and Wicks: Engineering Economy, Pearson
- 5. R.Paneer Seelvan: Engineering Economics, PHI
- 6. Michael R Lindeburg : Engineering Economics Analysis, Professional Pub
- 7. Premvir Kapoor, Sociology & Economics for Engineers, Khanna Publishing House (AICTE Recommended Textbook – 2018)

ESC-391: Analog & Digital Electronics

Course Outcome (CO)

Student will be able to:

CO1	Ability to design and implement both combinational and sequential circuits and to analyze their operations
CO2	Ability to solve engineering problems in digital system design.
CO3	Ability to design simple analog circuits and observe their performance.
CO4	Communicate effectively about laboratory work both orally and in writing technical reports.

	Analog & Digital Electronics (ESC-391)												
COs	PROGRAM OUTCOMES(POs)												
	PO	PO PO12											
	1	2	3	4	5	6	7	8	9	10	11		
CO1	3	2	2		1	2	1	1	2	1		1	
CO2		1	1			2	1		1				
CO3	3		2		1		1	1	2	1		1	
CO4	3	2	1		1	2	1		2	1		1	
AVG	3	1.6	1.5		1	2	1	1	1.7 5	1		1	

Syllabus (ESC-391)

Lab	aboratory Experiments:							
Ana	log Electronics							
1	Design a Class A amplifier							
2	Design a Phase-Shift Oscillator							
3	Design of a Schmitt Trigger using 555 timer							
Digi	tal Electronics							
4	Design a Full Adder using basic gates and verify its output / Design a Full Subtractor circuit using basic gates and verify its output.							
5	Construction of simple Decoder & Multiplexer circuits using logic gates.							
6	Realization of RS / JK / D flip flops using logic gates							
7	Design of Shift Register using J-K / D Flip Flop							
8	Realization of Synchronous Up/Down counter							
9	Design of MOD- N Counter							
10	Study of DAC							

PCC-CS391: Data Structure & Algorithm Lab

Course Outcome (CO)

Student will be able to:

CO1	Students will be able to Appreciate the importance of structure and abstract data type, and their basic usability in different applications
CO2	Students will be able to Analyze and differentiate different algorithms based on their time complexity.
CO3	Students will be able to Implement linear and non-linear data structures using linked lists.
CO4	Students will be able to Understand and apply various data structure such as stacks, queues, trees, graphs, etc. to solve various computing problems.

	Data Structure & Algorithm (PCC-CS391)												
CO'	PO'S												
ŝ	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	
CO1	3		2	3			1	3	2	3	2	3	
CO2	2	2	3				1	1		1	2	2	
CO3		2		3					2	3		2	
CO4		2	1	3			1	2	2		2	3	
Avg	2.5	2	2	3			1	2	2	2.3	2	2.5	

Department of Computer Science and Engineering

Syllabus (PCC-CS391)

La	boratory Experiments:
Lir	near Data Structure
1	Implementation of array operations
2	Stacks and Queues: adding, deleting elements Circular Queue: Adding & deleting elements
3	Merging Problem: Evaluation of expressions operations on Multiple stacks & queues:
4	Implementation of linked lists: inserting, deleting, inverting a linked list. Implementation of stacks & queues using linked lists
5	Polynomial addition, Polynomial multiplication
No	n Linear Data Structure
6	Recursive and Non-recursive traversal of Trees
7	Threaded binary tree traversal. AVL tree implementation
8	Application of Trees. Application of sorting and searching algorithms
9	Hash tables implementation: searching, inserting and deleting, searching & sorting techniques.

Department of Computer Science and Engineering

PCC-CS392: Computer Organization

Course Outcome (CO)

Student will be able to:

CO1	To implement adder circuits using basic gates
CO2	To understand the converter circuits using basic gates.
CO3	To understand the working of Multiplexer
CO4	understand the various circuits for ALU, and control units

	Computer Organization Lab (PCC-CS392)													
co'		PO'S												
s	РО 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO1 2		
CO1	2	3	2		2	2		2		2		2		
CO2		2	2			2			2	2				
CO3	2		2		2				2			3		
CO4	3	2			2			2		3				
Avg	2.3	2.3	2		2	2		2	2	2.3		2.5		

Department of Computer Science and Engineering

Syllabus (PCC-CS392)

Lab	oratory Experiments:
1	Familiarity with IC-chips: a) Multiplexer, b) Decoder, c)
	Encoder b) Comparator Truth Table verification and
	clarification from Data-book.
2	Design an Adder/Subtractor composite unit.
3	Design a BCD adder.
4	Design of a 'Carry-Look-Ahead' Adder circuit.
5	Use a multiplexer unit to design a composite ALU
6	Use ALU chip for multibit arithmetic operation
7	Implement read write operation using RAM IC
8	8. (a) & (b) Cascade two RAM ICs for vertical and horizontal
	expansion.

PCC-CS393: IT Workshop (Sci Lab/MATLAB/Python/R)

Course Outcome (CO)

Student Will be able to:

CO1	To master an understanding of scripting & the contributions of scripting languages
CO2	Design real life problems and think creatively about solutions
CO3	Apply a solution in a program using R/Matlab/Python.
CO4	To be exposed to advanced applications of mathematics, engineering and natural sciences to program real life problems.

	PCC-CS393: IT Workshop (Sci Lab/MATLAB/Python/R)													
		PO'S												
CO'S	PO1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	РО 8	PO 9	PO1 0	PO1 1	PO1 2		
CO1	3	2	2	3	1		2	2		3	1	3		
CO2	2		2		1			2	2	2		2		
CO3	2	2		3	1		2		2	2	1	3		
CO4		3	2		1		2		2		1	2		
Avg	2.3	2.3	2	3	1		2	2	2	2.3	1	2.5		

Syllabus (PCC-CS393)

Programming in R

1.Introduction to mechanism for statistics, data analysis, and machine learning; Introduction of R Programming, How to install and run R, Use of R help files, R Sessions, R Objects – Vectors, Attributes, Matrices, Array, Class, List, Data Frames etc. Operators in R.

2.R Programming Structures, Control Statements, Loops, Repeat and Break, R-Function, R- Vector Function, Recursive Function in R.

3.R Packages (Install and Use), Input/Output Features in R, Reading or Writing in File. Data Manipulation in R. Rearranging data, Random Number and Simulation, Statistical methods like min, max, median, mean, length, Linear Regression, Normal Distribution, Decision tree

4.Graphics, Creating Graphs, The Workhorse of R Base Graphics, Graphical Functions – Customizing Graphs, Saving Graphs to Files, Pie chart, Bar Chart, Histogram.

Programming in Matlab

Introduction Why MATLAB?, History, Its strengths, Competitors, Starting MATLAB, Using MATLAB as a calculator, Quitting MATLAB

Basics Familiar with MATLAB windows, Basic Operations, MATLAB-Data types, Rules about variable names, Predefined variables

Programming-I

Vector, Matrix, Array Addressing, Built-in functions, Mathematical Operations, Dealing with strings (Array of characters), Array of array (cell) concept

Department of Computer Science and Engineering

Programming-II

Script file, Input commands, Output commands, Structure of function file, Inline functions, Feval command, Comparison between script file and function file

Conditional statements and Loop

Relational and Logical Operators, If-else statements, Switch-case statements, For loop, While loop, Special commands (Break and continue), Import data from large database, Export data to own file or database

2D Plotting

In-built functions for plotting, Multiple plotting with special graphics, Curve fitting, Interpolation, Basic fitting interface

3D Plotting

Use of meshgrid function, Mesh plot, Surface plot, Plots with special graphics

Programming with Python Introduction

History, Features, Setting up path, Working with Python, Basic Syntax, Variable and Data Types, Operator

Conditional Statements If, If- else, Nested if-else, Looping, For, While, Nested loops

Control Statements Break, Continue, Pass

String Manipulation Accessing Strings, Basic Operations, String slices, Function and Methods

Lists

Introduction, Accessing list, Operations, Working with lists, Function and Methods

Tuple

Department of Computer Science and Engineering

Introduction, Accessing tuples, Operations, Working, Functions and Methods

Dictionaries

Introduction, Accessing values in dictionaries, Working with dictionaries, Properties

Functions

Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous functions, Global and local variables

Modules

Importing module, Math module, Random module, Packages, Composition, Input-Output Printing on screen, Reading data from keyboard, Opening and closing file, Reading and writing files, Functions

Exception Handling

Exception, Exception Handling, Except clause, Try? finally clause, User Defined Exceptions.

Text book and Reference books:

1. Dr. Jeeva Jose, Begineer's Guide for Data Analysis Using R Programming, Khanna Publishing House, New Delhi

Department of Computer Science and Engineering

4th Semester/2nd year

PCC-CS401: Discrete Mathematics

Course Outcome (CO)

Student will be able to:

CO1	Express a logic sentence in terms of predicates, quantifiers, and logical connectives.					
CO2	Derive the solution for a given problem using deductive logic and prove the solution based on logical inference.					
CO3	Classify its algebraic structure for a given a mathematical problem.					
CO4	Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra.					
CO5	Develop the given problem as graph networks and solve with techniques of graph theory.					

	РО	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2		3			2		2	1		3
CO2		2	1	2								2
CO3	2	2	1				2		1	1		2
CO4				2			2		2	1		
CO5	2		1							1		
Avg	2	2	1	2.3			2		1.6	1		2.3

Department of Computer Science and Engineering

Syllabus (PCC-CS401)

Unit	Content	Hrs/Unit
1	Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument andThe Power Set theorem, Schroeder-Bernsteintheorem.	8
	Principles of Mathematical Induction: The Well-Ordering Principle, Recursive definition, The Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic.	
2	Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation and combination	5
3	Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables,	8
	Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers. Proof Techniques: Some Terminology, Proof Methods and Strategies, Forward Proof, Proof by Contradiction, Proof by Contraposition, Proof of Necessity and Sufficiency.	

Algebraic Structures and Morphism: Algebraic	
structures with one Binary	7
Operation, Semi Groups,	
Monoids, Groups, Congruence Relation and	
Quotient Structures, Free and Cyclic Monoids	
and Groups, Permutation Groups,	
Substructures, Normal Subgroups, Algebraic	
Structures with two Binary Operation, Rings,	
Integral Domain and Fields.	
Boolean Algebra and Boolean Ring, Identities	
of Boolean Algebra, Duality, Representation of	
Boolean Function, Disjunctive and Conjunctive	
Normal Form	
Graphs and Trees: Graphs and their properties,	8
Degree, Connectivity, Path, Cycle, Sub	
Graph, Isomorphism, Eulerian and Hamiltonian	
Walks, Graph Colouring, Colouring maps	
and Planar Graphs, Colouring Vertices,	
Colouring Edges, List Colouring, Perfect	
Graph, definition properties and Example,	
rooted trees, trees and sorting, weighted trees	
and prefix codes, Bi-connected component and	
Articulation Points, Shortest distances.	
	structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition properties and Example, rooted trees, trees and sorting, weighted trees and prefix codes, Bi-connected component and

Books

1. Russell Merris, Combinatorics, Wiley-Inter science series in Discrete Mathematics and Optimisation

2. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI

3. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning

- 4. Gary Chartrand and Ping Zhang Introduction to Graph Theory, TMH
- 5. J.K. Sharma, Discrete Mathematics, Macmillan

Department of Computer Science and Engineering

6. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.

7. S. K. Chakraborty and B. K. Sarkar, Discrete Mathematics, OXFORD University Press.

8. Douglas B. West, Introduction to graph Theory, PHI

9. C. L. Liu, Elements of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 2000.

10. R. C. Penner, Discrete Mathematics: Proof Techniques and Mathematical Structures, World Scientific, 1999.

11. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.

12. N. Deo, Graph Theory, Prentice Hall of India, 1974.

13. S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 1999.

PCC-CS402: Computer Architecture

Course Outcome (CO)

Student will be able to:

CO1	Design basic and intermediate RISC pipelines, including
COI	
	the instruction set, data paths, and ways of dealing with
	pipeline hazards.
CO2	Understand various techniques of instruction-level
	parallelism, including superscalar execution, branch
	prediction, and speculation, in design of high-
	performance processors.
CO3	State and understand memory hierarchy design, memory
	access time formula, performance improvement
	· 1 1
	techniques, and trade-offs.
CO4	Realize and compare properties of shared memory and
	distributed multiprocessor systems and cache coherency
	protocols.

Department of Computer Science and Engineering

CO-PO Mapping

				Compu	uter Arc	hitectu	re (PCC	C-CS402)			
CO'	PO'S											
s	РО 1	PO2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2
CO 1	3	2		2	2			3	3	2		2
CO 2		3		1			2	2	2	1		
CO 3	2	2		2	2		2	2	3	2		2
CO 4		2		1	2		2		2	1		2
Avg	2. 5	2.2 5		1. 5	2		2	2. 3	2. 5	1.5		2

Syllabus (PCC-CS402)

Unit	Content	Hrs/ Unit
1	Introduction: Review of basic computer architecture (Revisited), Quantitative techniques in computer design, measuring and reporting performance. (3L) Pipelining: Basic concepts, instruction and arithmetic pipeline, data hazards, control hazards and structural hazards, techniques for handling hazards. Exception handling. Pipeline optimization techniques; Compiler techniques for improving performance. (9L)	12

	Hierarchical memory technology: Inclusion,	
2	Coherence and locality properties; Cache memory organizations, Techniques for reducing cache	8
	misses; Virtual memory organization, mapping	
	and management techniques, memory replacement	
	policies. (8L)	
	Instruction-level parallelism: basic	
3	concepts, techniques for increasing ILP,	6
5	superscalar, super- pipelined and VLIW	Ū
	processor architectures. Arrayand vector	
	processors. (6L)	
	Multiprocessor architecture: taxonomy of	
4.	parallel architectures; Centralized shared-	7
	memory architecture: synchronization, memory	
	consistency, interconnection networks.	
	Distributed shared- memory architecture. Cluster	
	computers. (8L) Non von Neumann	
	architectures: data flow computers, reduction	
	computer architectures, systolic architectures.	
	(4L)	
۱ <u> </u>		

Books

- 1. V. Carl, G. Zvonko and S. G. Zaky, "Computer organization", McGraw Hill, 1978.
- 2. B. Brey and C. R. Sarma, "The Intel microprocessors", Pearson Education, 2000.
- 3. J. L. Hennessy and D. A. Patterson, "Computer Architecture A Quantitative Approach", *Morgan Kauffman, 2011*.
- 4. W. Stallings, "Computer organization", PHI, 1987.
- 5. P. Barry and P. Crowley, "Modern Embedded Computing", Morgan Kaufmann, 2012.
- 6. N. Mathivanan, "Microprocessors, PC Hardware and Interfacing", Prentice Hall, 2004.

Department of Computer Science and Engineering

- 7. Y. C. Lieu and G. A. Gibson, "Microcomputer Systems: The 8086/8088 Family", Prentice *Hall India*, 1986.
- 8. J. Uffenbeck, "The 8086/8088 Design, Programming, Interfacing", Prentice Hall, 1987.
- 9. B. Govindarajalu, "IBM PC and Clones", Tata McGraw Hill, 1991.
- 10. P. Able, "8086 Assembly Language Programming", Prentice Hall India6. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.
- 11. Rajaraman "Computer Organization & Architecture", PHI
- 12. B.Ram "Computer Organization & Architecture", Newage *Publications*

PCC-CS403: Formal Language & Automata Theorv

Course Outcome (CO)

Student will be able to:

CO1	Students able to define and recognize the behaviour of a system.
CO2	Students able to check the equivalence between regular linear grammar and finite automata by the application of a number of proof techniques to theorems in language design

CO3	Student able to convert finite automata to regular
	expression after proper analyzation.
CO4	Students able to minimize context free grammar and
	hence can check the equivalence of CFL and PDA which
	ultimately leads to the proper evaluation of the
	acceptability of strings by the system.
CO5	Students able to design Turing machine that describes
	computation effectively and efficiently.

CO-PO Mapping

	Formal Language & Automata Theory (PCC-CS403)												
CO'	PO'S												
s	PO 1	PO 2	РО 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	
CO1	3	2	1	2	2	2			2	2	1	2	
CO2	2		1		2				1		1		
CO3	2	3		2		2			2	2		3	
CO4	3	2	1	2	2	2				2	1		
CO5	2.5	2.3	1	2	2	2			1.6	2	1	2.5	
Avg	3	2	1	2	2	2			2	2	1	2	

Syllabus (PCC-CS403)

Unit	Content	Hrs/l	Unit
1	Introduction: Alphabet, languages and grammars, productions and derivation Chomsky hierarchy of languages.		

2	Regular languages and finite automata: Regular expressions and languages, eterministic finite automata (DFA) and equivalence with regular expressions, nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma for regular languages, minimization of finite automata)	7
3	Context-free languages and pushdown automata: Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach normal forms, nondeterministic pushdown automata (PDA) and equivalence with CFG, parse trees, ambiguity in CFG, pumping lemma for context- free languages, deterministic push down automata, closure properties of CFLs.	6
4.	Context-sensitive languages: Context- sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG.	6
5	Turing machines: The basic model for Turing machines (TM), Turing recognizable (recursively enumerable) and Turing- decidable(recursive) languages and their closure properties, variants of Turing machines, nondeterministic TMs and equivalence with deterministic TMs, unrestricted grammars and equivalence with Turing machines, TMsas enumerators	
6	Undecidability: Church-Turing thesis, universal Turing machine, the universal and diagonalization languages, reduction between	6

languages and Rice s theorem, undecidable problems about languages

Books

- 1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Education Asia.
- *2.* Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, Pearson Education Asia.
- *3.* Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science, Springer.
- 4. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.
- 5. John Martin, Introduction to Languages and The Theory of Computation, TataMcGraw Hill., PEARSON. Dr. R.B.Patel, Theory of Computation, Khanna Publishing House

PCC-CS404: Design and Analysis of Algorithms

Course Outcome (CO)

Student will be able to:

CO1	Students	able	to	analyze	and	evaluate	asymptotic
	1		0		d wri	te rigorous	correctness
	proofs for	algor :	ithm	18			

CO2	Students able to identify and explain familiarity of major									
	algorithms and data structures.									
CO3	Students able to apply important algorithmic design paradigms and methods of analysis.									
CO4	Students able to synthesize efficient algorithms in									
	common engineering design situations									

	DESIGN AND ANALYSIS OF ALGORITHM(PCC-CS404)												
CO	PO'S												
CO' S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1													
	2	3	2	3	1			2	1	2	1	2	
CO2		2	2		1				1	2		2	
CO3	2	3	2	3	1			2	1		1		
CO4	2	3		3				2		2	1	2	
Avg	2	2.75	2	3	1			2	1	2	1	2	

Department of Computer Science and Engineering

Syllabus (PCC-CS404)

Unit	Content	Hrs/Unit
1	Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem	8
2	Fundamental Algorithmic Strategies: Brute-Force, Greedy, Dynamic Programming, Branch and- Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving, Bin Packing, Knap Sack TSP. Heuristics –characteristics and their application domains.	8
3	Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm. Tractable and Intractable Problems: Computability	6
4.	of Algorithms, Computability classes – P,NP, NP- complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.	10
5	Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE	4

Department of Computer Science and Engineering

Books

- 1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.
- 2. Fundamentals of Algorithms E. Horowitz et al.
- 3. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.
- 4. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.
- 5. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA
- 6. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House (AICTE Recommended Textbook – 2018)
- 7. Algorithms Design and Analysis, Udit Agarwal, Dhanpat Rai

BS-BSC-401: Biology

Course Outcome (CO)

Student will be able to:

CO1	Describe how biological observations of 18th Century that lead to major discoveries. Convey that classification per se is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecological
CO2	Highlight the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring
CO3	Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. Classify enzymes and distinguish between different mechanisms of enzyme action.
CO4	Identify DNA as a genetic material in the molecular basis of information transfer. Analyse biological processes at the reductionistic level. Apply thermodynamic principles to biological systems.
CO5	Identify and classify microorganisms.

Department of Computer Science and Engineering

	РО	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2		2	1		2			1	1		2
CO2		2		1		3			2			2
CO3	2	2		1		2			1	1		1
CO4	2	2	2	1					2			1
CO5		2	2			2			1	1		1
Avg	2	2	2	1		2.25			1.4	1		1.4

CO-PO Mapping

Syllabus (BS-BSC-401)

<u>Unit I</u>: Introduction to biology

To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry.

Unit II: Classification

The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure-prokaryotes or eucaryotes. (c energy and Carbon utilisation -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricoteliec, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three

Department of Computer Science and Engineering

major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus

<u>Unit III</u>: Genetics

To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics.

<u>Unit IV</u>: Biomolecules

To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids.

Unit V: Enzymes

To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis.

<u>Unit VI</u>: Information transfer

The molecular basis of coding and decoding genetic information is universal Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA 4 Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Information Technology (Applicable from the academic session 2018-2019) 12 PG structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination. **Unit VII: Macromolecular analysis**

Department of Computer Science and Engineering

How to analyse biological processes at the reductionist level Proteinsstructure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

<u>Unit VIII</u>: Metabolism

The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keqand its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge

<u>Unit IX</u>: Microbiology

Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.

Books

1. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd

2. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H. John Wiley and Sons

3. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company

4. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher

5. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers

6. Biology for Engineers, McGraw Hill (ISBN: 978-11-21439-931)

MC-401:Environmental Science

Course Outcome (CO)

Student will be able to:

CO1	To understand the natural environment and its
	relationships with human activities
CO2	To apply the fundamental knowledge of science and
	engineering to assess environmental and health risk
CO3	To develop guidelines and procedures for health and
	safety issues obeying the environmental laws and
	regulations
CO4	Acquire skills for scientific problem-solving related to
	air, water, noise& land pollution

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2		1		2	2	3	3	2	2		2
CO2	2		1	2	3	3		3	1		1	2
CO3				2	2	2	3	3	1	2	1	
CO4	2		1	2	3	3	3	2	1	2	1	2
Avg	2		1	2	2.5	2.5	3	2.7 5	1.2 5	2	1	2

Department of Computer Science and Engineering

Syllabus (MC-401)

Unit-I

Basic ideas of environment, basic concepts, man, society & environment, their interrelationship

Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, nonrenewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development.

Materials balance: Steady state conservation system, steady state system with non-conservative pollutants, step function.

Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; anthropogenic degradation like Acid rain cause, effects and control. Nature and scope of Environmental Science and Engineering.

Unit-II

Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystemcomponents types and function. Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web.

Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur].

Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity.

Unit-III

Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause.

Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as

Department of Computer Science and Engineering

albedo], Problems. Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget.

Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).

Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.

Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN.

Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification.

Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference).

Unit-IV

Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds.

River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation, reaeration], COD, Oil, Greases, pH.

Lake: Eutrophication [Definition, source and effect].

Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)

Standard and control: Waste water standard [BOD, COD, Oil, Grease], Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition.

Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic

Department of Computer Science and Engineering

Unit-V

Lithosphere; Internal structure of earth, rock and soil

Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes; Recovery and disposal method-Open dumping, Land filling, incineration, composting, recycling. Solid waste management and control (hazardous and biomedical waste).

Unit-VI

Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise]

Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level

Unit-VII

Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/agreement/ protocol.

Books

- 1. M.P. Poonia & S.C. Sharma, Environmental Studies, Khanna Publishing House (AICTE Recommended Textbook – 2018)
- 2. Masters, G. M., "Introduction to Environmental Engineering and Science", Prentice-Hall of India Pvt. Ltd., 1991.
- 3. De, A. K., "Environmental Chemistry", New Age International

PCC-CS492: Computer Architecture Lab

Course Outcome (CO)

Student will be able to:

CO1	Describe the fundamental organization of a computer system
CO2	Explain the functional units of a processor
CO3	Explain addressing modes, instruction formats and program control statements
CO4	Distinguish the organization of various parts of a system memory hierarchy

	(Computer Architecture Lab (PCC-CS492))												
CO,	PO'S												
s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	
CO1	2		3	2	3	2			2	3		3	
CO2		2		2	2		3		3	2			
CO3	2	2	2	3	3				2	3		3	
CO4	2	2			2	3	3		2	3		3	
AV G	2	2	2.5	2.3	2.5	2.5	3		2.2 5	2.75		3	

Department of Computer Science and Engineering

Syllabus (PCC-CS492)

La	aboratory Experiments:							
1	HDL introduction.							
2	Basic digital logic base programming with HDL							
3	8-bit Addition, Multiplication, Division							
4	8-bit Register design							
5	Memory unit design and perform memory operations.							
6	8-bit simple ALU design							
7	8-bit simple CPU design							
8	Interfacing of CPU and Memory.							

PCC-CS494 : Design & Analysis Algorithm

Course Outcome (CO)

Student will be able to:

CO1	Analyze the asymptotic performance of algorithms.
CO2	Write rigorous correctness proofs for algorithms.
CO3	Demonstrate a familiarity with major algorithms and
	data structures
CO4	Apply important algorithmic design paradigms and
	methods of analysis.

Department of Computer Science and Engineering

	PCC-CS494 : Design & Analysis Algorithm														
CO'	PO'S														
S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2			
CO1	3	3	3	3	3			2	3	3		3			
CO2		3	3	3				2		3		2			
CO3	2		3	3				2	3			3			
CO4	3	2	2	3	3				3	3					
Avg	2.6	2.6	2.7 5	3	3			2	3	3		2.6			

Syllabus (PCC-CS494)

Laborator	Laboratory Experiments:								
Divide and	Divide and Conquer:								
1	Implement Binary Search using Divide and Conquer approach Implement Merge Sort using Divide and Conquer approach								
2	Implement Quick Sort using Divide and Conquer approach Find Maximum and Minimum element from a array of integer using Divide and Conquer approach								
3	Find the minimum number of scalar multiplication needed for chain of matrix								
4	Implement all pair of Shortest path for a graph (Floyed- Warshall Algorithm) Implement Traveling Salesman Problem								
5	Implement Single Source shortest Path for a graph (Dijkstra , Bellman Ford								

	Algorithm									
	Brunch and Bound:									
6	Implement 15 Puzzle Problem									
	Backtracking:									
7	Implement 8 Queen problem									
8	Graph Coloring Problem Hamiltonian Problem									
	Greedy method									
9	Knapsack Problem									
	Job sequencing with deadlines									
10	Minimum Cost Spanning Tree by Prim's Algorithm Minimum									
	Cost Spanning Tree by Kruskal's Algorithm									
	Graph Traversal Algorithm:									
11	Implement Breadth First Search (BFS)									
12	Implement Depth First Search (DFS)									

Department of Computer Science and Engineering

5th Semester

ESC501: Software Engineering

Course Outcome (CO)

Student Will be able to:

CO1	Students will be able to outline the features of different lifecycle models.
CO2	Students will be able to explain the principals involved in gathering software requirements
CO3	Students will be able to illustrate quality assurance procedures with verification and validation during software development
CO4	Students will be able to Make use of suitable models through analysis of requirements and arrive at an appropriate software design.

	Software Engineering (ECS501)												
CO'	PO'S												
s	PO 1	PO2	PO 3	РО 4	PO 5	PO 6	PO 7	PO8	PO 9	PO1 0	PO1 1	PO1 2	
C01	3	2	-	_	-	-	-	2	_	-	3	-	
CO2	-	3	1		3	-	-	3	3	2	-	-	
CO3	3	-	2		-			-	2	-	1	3	

Department of Computer Science and Engineering

CO4	3	3	3		3			3	1	2	3	2
Avg	3	2.6 7	2	-	3	-	-	2.6 7	2	2	2.3 3	2.5

Syllabus (ECS501)

Unit	Content	Hrs/Unit	Marks/ Unit
1	Overview of System Analysis & Design , Business System Concept, System Development Life Cycle, Waterfall Model Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. [10L]	10	
2	System Design – Context diagram and DFD, Problem Partitioning, Top-Down And Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. [5L]	5	
3	Coding & Documentation – Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. [4L] Testing – Levels of Testing, Integration Testing, Test case Specification, Reliability Assessment, Validation & Verification, Metrics, Monitoring & Control. [8L]	12	

4.	Software Project Management – Project Scheduling, Staffing, Software Configuration Management, Quality Assurance, Project Monitoring. [7L]	7	
5	Static and dynamic models, why modeling, UML diagrams: Class diagram, interaction diagram: collaboration diagram, Sequence diagram, state chart diagram, activity diagram, implementation diagram. [10 L]		

Books

Text book and Reference books:

1. Pressman, Software Engineering : A practitioner's approach–(TMH)

- 2. Pankaj Jalote, Software Engineering- (Wiley-India)
- 3. N.S. Gill, Software Engineering (Khanna Publishing House)
- 4. Rajib Mall, Software Engineering- (PHI)
- 5. Agarwal and Agarwal, Software Engineering (PHI)
- 6. Sommerville, Software Engineering Pearson
- 7. Martin L. Shooman, Software Engineering TMH

PCC-CS501 : Compiler Design

Course Outcome (CO)

Student will be able to:

CO1	Students relate and understand lexical analyzer and parser generator tools
CO2	Students use to build symbol table along with the generation of intermediate code followed by assembly code
CO3	Students analyze the working principle of both Top-Down and Bottom-Up parsers followed by the implantation of semantic rules into a parser that performs attribution while parsing
CO4	Students prioritize on understanding of compiler architecture, memory allocation and compiler optimization.

CO-PO Mapping

Compiler Design (PCC-CS501)												
CO'	PO'S											
S	PO 1	PO 2	РО 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
C01	1		3	2	3				2	-	3	_
CO2	2	2	3	2	2			2	2	-		2
CO3	3		3	2	2			-	2	3		2
CO4	_	_	3	2				3	2	3		2
Avg	2	1.5	3	2	2.4	-	-	2.5	2	3	-	2

Syllabus (PCC-CS501 : Compiler Design)

Unit	Content	Hrs/Unit	Marks/
			Unit
1	Introduction to Compiling [3L]	3	
1	Compilers, Analysis of the source program,	3	
	The phases of the compiler, Cousins of the		
	compiler.		
2	Lexical Analysis [6L]	6	
	The role of the lexical analyzer, Tokens,		
	Patterns, Lexemes, Input buffering,		
	Specifications of a token, Recognition of a		
	tokens, Finite Automata, From a regular		
	expression to an NFA, From a regular		
	expression to NFA, From a regular expression		
	to DFA, Design of a lexical analyzer generator		
	(Lex).		
3	Syntax Analysis [9L]		
	The role of a parser, Context free Grammars,		
	Writing a grammar, Top down Parsing, Non-		
	recursive Predictive parsing (LL), Bottom up		
	parsing, Handles, Viable prefixes, Operator precedence parsing, LR parsers (SLR,LALR),		
	Parser generators (YACC). Error Recovery		
	strategies for different parsing techniques.		
4	Syntax directed translation [5L]	5	
4	Syntax director definitions, Construction of		
	syntax trees, Bottom-up evaluation of S		
	attributed definitions, L attributed definitions,		
	Bottom-up evaluation of inherited attributes.		
5	Type checking [4L]	4	
	Type systems, Specification of a simple type		
	checker, Equivalence of type expressions,		
	Typeconversions		
6	Run time environments [5L]	5	
	Source language issues (Activation trees,		
	Controlstack, scope of declaration, Binding of		
	names), Storage organization (Subdivision of		
	run-time memory, Activation records), Storage		
	allocation strategies, Parameterpassing (call by		

	value, call by reference, copy restore, call by name), Symbol tables, dynamic storage allocation techniques.		
7	Intermediate code generation [4L]	4	
	Intermediate languages, Graphical		
	Representation, Three-address code,		
	Implementation of three address statements		
	(Quadruples, Triples, Indirect triples).		
8	Code optimization [5L]	5	
	Introduction, Basic blocks & flow graphs,		
	Transformation of basic blocks, Dag		
	representation of basic blocks, The		
	principle sources of optimization, Loops		
-	in flowgraph, Peephole optimization.		
9	Code generations [4L]	4	
	Issues in the design of code generator, a		
	simple code generator, Register allocation		
	& assignment.		

Books

Text book and Reference books:

1. Aho, Sethi, Ullman - "Compiler Principles, Techniques and Tools" - Pearson Education.

2. Holub - "Compiler Design in C" - PHI.

Department of Computer Science and Engineering

PCC-CS502 : Operating Systems

Course Outcome (CO)

Student Will be able to:

0.04	
CO1	Students will be able to understand the role and
	responsibilities of OS in the computer system and analyze
	the concepts of processes in operating system and
	illustration of the scheduling of processor for a given
	problem instance.
CO2	Students will be able to identify the dead lock situation
	and provide appropriate solution so that protection &
	security of the operating system is also maintained.
CO3	Students will be able to analyze memory management
	techniques, concepts of virtual memory and disk
	scheduling
CO4	Students will be able to understand the implementation of
	file systems and directories along with the interfacing of
	IO devices with the operating system.

				PCC	C-CS502	2 : Ope	rating S	Systems				
со;		PO'S										
S	PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO8	PO 9	PO1 0	PO1 1	PO1 2
C01	3	3	2			2		-	-	-	1	2
CO2	2	2	-			2		3		3	1	
CO3	2		2			2		3	2	3	1	

Department of Computer Science and Engineering

CO4	1		-			2		2	2	3	1	3
Avg	2	2.5	2	-	-	2	-	2.6 7	2	3	1	2.5

Syllabus (PCC-CS502)

Unit	Content	Hrs/Unit	Marks/
			Unit
	Introduction: Concept of Operating		
1	Systems, Generations of Operating systems,		
	Types of Operating Systems, OS Services,		
	System Calls, Structure of an OS -		
	Layered, Monolithic, Microkernel		
	Operating Systems, Concept of Virtual		
	Machine. Case study on UNIX and		
	WINDOWS Operating System.		
	Processes: Definition, Process	10	
2	Relationship, Different states of a Process,		
_	Process State transitions, Process Control		
	Block (PCB), Context switching		
	Thread: Definition, Various states, Benefits		
	of threads, Types of threads, Concept of		
	multithreads,		
	Process Scheduling: Foundation and		
	Scheduling objectives, Types of Schedulers,		
	Scheduling criteria: CPU utilization,		
	Throughput, Turnaround Time, Waiting		
	Time, Response Time; Scheduling		
	algorithms: Pre-emptive and Non pre-		
	emptive, FCFS, SJF, RR; Multiprocessor		
	scheduling: Real Time scheduling: RM and		
	EDF.		

	Inter-process Communication: Critical		
3.	Section, Race Conditions, Mutual	5	
5.	Exclusion, Hardware Solution, Strict	5	
	Alternation, Peterson's Solution, The		
	Producer Consumer Problem, Semaphores,		
	Event Counters, Monitors, Message Passing,		
	Classical IPC Problems: Reader's & Writer		
	Problem, Dinning Philosopher Problem etc.		
4.	Deadlocks: Definition, Necessary and	5	
4.	sufficient conditions for Deadlock,	J	
	Deadlock Prevention,		
	Deadlock Avoidance: Banker's algorithm,		
	Deadlock detection and Recovery.		
5.	Memory Management: Basic concept,	8	
э.	Logical and Physical address map, Memory	0	
	allocation: Contiguous Memory allocation-		
	Fixed and variable partition– Internal and		
	External fragmentation and Compaction;		
	Paging: Principle of operation –Page		
	allocation Hardware support for paging,		
	Protection and sharing, Disadvantages of		
	paging.		
	Virtual Memory: Basics of Virtual		
	Memory Hardware and control structures		
	Locality of reference, Page fault,		
	Working Set , Dirty page/Dirty bit -		
	Demand paging, Page Replacement		
	algorithms: Optimal, First in First Out		
	(FIFO), Second Chance (SC), Not recently		
	used (NRU) and Least Recently		
6.	I/O Hardware: I/O devices, Device	6	
	controllers, Direct memory access		
	Principles of I/O Software: Goals of		
	Interrupt handlers, Device drivers, Device		
	independent I/O software, Secondary-		
	Storage Structure: Disk structure, Disk		
	scheduling algorithms		
	File Management: Concept of File, Access		

methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance. **Disk Management:** Disk structure, Disk scheduling -FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-

Books

Text book and Reference books:

block. Bad blocks

1. Operating System Concepts Essentials, 9th Edition by Avi Silberschatz, Peter Galvin, Greg Gagne, Wiley Asia Student Edition.

2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.

3. Operating System Concepts, Ekta Walia, Khanna Publishing House (AICTE Recommended Textbook – 2018)

4. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing

5. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison- Wesley

6. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India

7. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

PCC-CS503 : Object Oriented Programming

Course Outcome (CO)

Student Will be able to:

CO1	Students able to relate and understand the basic Object Oriented concepts.
CO2	Students learn to solve problem statements by applying Object Oriented Programming concepts.
CO3	Students categorize the implementation of various features of object oriented programming according to real world problems.
CO4	Students able to assess the pros and cons of each feature of object oriented programming
CO5	Students able to design different application based software tools.

		PCC-CS503 : Object Oriented Programming										
CO'	PO'S											
s	PO 1	РО 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
C01	2	2	3	3	_			_	2	3		
CO2	_	2		_	_			2	3	3		_
CO3	3	2		3	3			_	2	_		3
CO4	_	2	2	3	_			_	3	3		2
CO5		2		_	3			2	3	3		
Avg	2.5	2	2.5	3	3	-	-	2	2.6	3	-	2.5

JIS GROUP

Syllabus (PCC-CS503)

Unit	Content	Hrs/Unit	Marks/
			Unit
1	Abstract data types and their specification. How to implement an ADT. Concrete state space, concrete invariant, abstraction	;	
	function. Implementing operations, illustrated by the Text example.		
2	Features of object-oriented Programming. Encapsulation, object identity, polymorphism – but not inheritance.		
3	Inheritance in OO design. Design patterns. Introduction and classification. The iterator pattern.	6	
4	Model-view-controller pattern, Commands as methods and as objects. Implementing OO language features, Memory management.	6	
5	Generic types and collections GUIs. Graphical programming with Scale and Swing .The software development process	6	

Books

1. Rambaugh, James Michael, Blaha – "Object Oriented Modelling and Design" – Prentice Hall, India

2. Ali Bahrami - "Object Oriented System Development" - Mc Graw Hill

3. Patrick Naughton, Herbert Schildt – "The complete reference-Java2" – TMH

- 4. R.K Das "Core Java For Beginners" VIKAS PUBLISHING
- 5. Deitel and Deitel "Java How to Program" 6th Ed. Pearson
- 6. Ivor Horton's Beginning Java 2 SDK Wrox

7. E. Balagurusamy – " Programming With Java: A Primer" – 3rd Ed. – TMH

HSMC-501 : Introduction to Industrial Management

Course Outcome (CO)

Student will be able to:

Student V	
CO1	Interpret given organization structure, culture, climate and major provisions offertories and laws.
CO2	Explain material requirement planning and store keeping procedure.
CO3	Plot and analyze inventory control models and techniques.
CO4	Prepare and analyze CPM and PERT for given activities. List and explain PPC functions.

	PO	РО	PO	PO	РО	РО	PO	PO	РО	PO	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1		3				1						2
CO2	2		2								3	2
CO3	2	2				2					3	2
CO4		2	2									2
Avg	2	2.33	2	-	-	1.5	-				3	2

Department of Computer Science and Engineering

JIS GROUP

Syllabus (HSMC-501)

Unit	Content	Hrs/	Marks
		Unit	/Unit
	Introduction	6	
1	System- concept, definition, types, parameters,		
	variables and behavior.		
	Management – definition and functions.		
	Organization structure:		
	• Definition.		
	• Goals.		
	• Factors considered in formulating		
	structure.		
	• Types.		
	Advantages and disadvantages.		
	• Applications.		
	Concept, meaning and importance of division		
	of labor, scalar & functional processes, span of		
	control, delegation of authority, centralization		
	and decentralization in industrial management.		
	Organizational culture and climate -meaning,		
	differences and factors affecting them.		
	Moral-factors affecting moral. Relationship		
	between moral and productivity. Job		
	satisfaction- factors influencing job		
	satisfaction.		
	Important provisions of factory act and labor		
	laws.		
2	Critical Path Method (CPM) and	8	
	Programme Evaluation Review Technique		
	(PERT):		
	CPM & PERT-meaning, features, difference,		
	applications. 2.2 Understand different terms		
	used in network diagram.		
	Draw network diagram for a real lifeproject containing 10-15 activities, computation of		
	LPO and EPO.(Take minimum three		
	examples).		
	onumpios).		

	Determination of critical path on network.	
	Floats, its types and determination offloats.	
	Crashing of network, updating and its	
	applications.	
3	Materials Management: 6	
	Material management-definition, functions,	
	importance, relationship with other	
	departments.	
	Purchase - objectives, purchasing systems,	
	purchase procedure, terms andforms used in	
	purchase department.	
	Storekeeping- functions, classification of	
	stores as centralized and decentralized with	
	their advantages, disadvantages and	
	application in actual practice.	
	Functions of store, types of records	
	maintained by store, various types and	
	applications of storage equipment, need and	
	general methods for codification ofstores.	
	Inventory control:	
	i. Definition.	
	ii. Objectives.	
	iii. Derivation for expression for Economic	
	Order Quantity (EOQ) and numeric	
	examples. iv. ABC analysis and other	
	modern methods of analysis.	
	Various types of inventory models such as	
	Wilson's inventory model, replenishment	
	model and two bin model. (Only sketch and	
	understanding, no derivation.).	
	3.6 Material Requirement Planning (MRP)-	
	concept, applications and brief details about	
	software packages availablein market.	
4	Production planning and Control(PPC): 8	
	Types and examples of production. PPC : i.	
	Need and importance. ii. Functions. iii. Forms	
	used and their importance. iv. General	
	approach foreach type of production.	
	Scheduling- meaning and need forproductivity	
	and utilisation.	
	Gantt chart- Format and method toprepare.	
L		

	Critical ratio scheduling-method and numeric		
	examples.		
	Scheduling using Gantt Chart (for atleast 5-7		
	components having 5-6 machining operations,		
	with processes, setting and operation time for		
	each component and process, resources		
	available, quantity and other necessarydata), At		
	least two examples.		
	4.7 Bottlenecking- meaning, effect and ways to		
	reduce.		
5	Value Analysis (VA) and Cost Control:	4	
	5.1 VA-definition, terms used, process and		
	importance. 5.2 VA flow diagram. DARSIRI		
	method of VA.		
	Case study of VA-at least two.		
	Waste-types, sources and ways to reduce them.		
	Cost control-methods and important guide		
	lines.		
6	Recent Trends in IM:	4	
	ERP (Enterprise resource planning) - concept,		
	features and applications.		
	Important features of MS Project. Logistics-		
	concept, need and benefits.		
	Just in Time (JIT)-concept and benefits.		
	Supply chain management-concept and		
	benefits.		
	1		

Books

Text book and Reference books:

- 1. L.S. Srinath- "CPM & PERT principles and Applications".
- 2. Buffa "Modern Production Management".
- 3. N. Nair "Materials Management".
- 4. O. P. Khanna "Industrial Engineering & Management".
- 5. Mikes "Value Analysis".

6. S.C. Sharma, "Engineering Management – Industrial Engineering & Management", Khanna Book Publishing Company, New Delhi

Department of Computer Science and Engineering

PEC-IT501A : Theory of Computation

Course Outcome (CO)

Student will be able to:

CO1	Students able to define and recognize the behaviour of a system.
CO2	Students able to check the equivalence between regular linear grammar and finite automata by the application of a number of proof techniques to theorems in language design.
CO3	Student able to convert finite automata to regular expression after proper analyzation.
CO4	Students able to minimize context free grammar and hence can check the equivalence of CFL and PDA which ultimately leads to the proper evaluation of the acceptability of strings by the system.
CO5	Students able to design Turing machine that describes computation effectively and efficiently.

	PEC-IT501A : Theory of Computation											
CO'		PO'S										
s	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
C01	2	-	-	-	3	2	2	-	-	2	_	2
CO2	3	2	3	-	-	-	-	-	1	-	1	2
CO3	2	3	2	3		-	-	_	2	_	-	3
CO4	-	2	-	-	2	-	2	2	2	-	-	-
CO5	3	-	2	-	3	2	3	3	-	-	2	3
Avg	2.5	2.3	2.3	3.0	2.6	2.0	2.3	2.5	1.6	2.00	1.50	2.50

Syllabus	(PEC-IT501A)
----------	--------------

Unit	Content	Hrs/Unit	Marks/ Unit
Unit	Content Fundamentals: Basic definition of sequential circuit, block diagram, mathematical representation, concept of transition table and transition diagram (Relating of Automata concept to sequential circuit concept) Design of sequence detector, Introduction to finite state model [2L] Finite state machine: Definitions, capability & state equivalent, kth-equivalent concept [1L] Merger graph, Merger table, Compatibility graph [1L] Finite memory definiteness, testing table & testing graph. [1L] Deterministic finite automaton and non- deterministic finite automaton.[1L] Transition diagrams and Language recognizers. [1L] Finite Automata: NFA with Î transitions - Significance, acceptance of languages. [1L] Conversions and Equivalence: Equivalence between NFA with andwithout Î transitions. NFA to DFA conversion. [2L] Minimization of FSM, Equivalence between two FSM's, Limitationsof FSM [1L] Application of finite automata, Finite Automata with output- Moore & Melay machine. [2L]	13	Marks/ Unit

2	Regular Languages : Regular sets. [1L]	8	
2	Regular expressions, identity rules.		
	Arden's theorem state and prove[1L]		
	Constructing finite Automata for a given		
	regular expressions, Regularstring accepted		
	by NFA/DFA [1L]		
	Pumping lemma of regular sets. Closure		
	properties of regular sets (proofs not		
	required). [1L]		
	Grammar Formalism: Regular grammars-		
	right linear and left linear grammars. [1L]		
	Equivalence between regular linear		
	grammar and FA. [1L]Inter conversion,		
	Context free grammar. [1L]		
	Derivation trees, sentential forms. Right		
	most and leftmost derivation of strings.		
	(Concept only) [1L]		
	Context Free Grammars, Ambiguity in		
3.	context free grammars. [1L]Minimization of	9	
	Context Free Grammars. [1L]		
	Chomsky normal form and Greibach normal		
	form. [1L]Pumping Lemma for Context Free		
	Languages. [1L]		
	Enumeration of properties of CFL (proofs		
	omitted). Closure propertyof CFL, Ogden's		
	lemma & its applications [1L]		
	Push Down Automata: Push down automata,		
	definition. [1L] Acceptance of CFL,		
	Acceptance by final state and acceptance by		
	empty state and its equivalence. [1L]		
	Equivalence of CFL and PDA, inter		
	conversion. (Proofs not required).[1L]		
	Introduction to DCFL and DPDA. [1L]		
4.	Turing Machine : Turing Machine,	5	
	definition, model [1L]Design of TM,		
	Computable functions [1L]		
	Church's hypothesis, counter machine [1L]		
	Types of Turing machines (proofs not		

required) [1 L]Universal Turing Machine, Halting problem [2L]	

Books

Text book and Reference books:

- 1. "Introduction to Automata Theory Language and Computation", Hopcroft H.E. andUllman J. D., Pearson education.
- 2. "Theory of Computation", R.B Patel, Khanna Publishing House, New Delhi
- 3. "Theory of Computer Science", Automata Languages and computation", Mishra and Chandra shekaran, 2nd edition, PHI.
- 4. "Formal Languages and Automata Theory", C.K.Nagpal, Oxford
- 5. "Switching & Finite Automata", ZVI Kohavi, 2nd Edn., Tata McGraw Hill
- 6. "Introduction to Computer Theory", Daniel I.A. Cohen, John Wiley
- 7. "Introduction to languages and the Theory of Computation", John C Martin, TMH
- 8. "Elements of Theory of Computation", Lewis H.P. & Papadimitrou C.H. Pearson, PHI.

PEC-IT501B : Artificial Intelligence

Course Outcome (CO)

Student will be able to:

Statent	
CO1	Explain artificial intelligence, its characteristics and its application areas.
CO2	Formulate real-world problems as state space problems, optimization problems or constraint satisfaction problems.
CO3	Select and apply appropriate algorithms and AI techniques to solve complex problems.
CO4	Design and develop an expert system by using appropriate tools and techniques.

	PEC-IT501B : Artificial Intelligence											
CO'						Р	O'S					
S	PO 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
C01	2	2					2	3	3	3	1	2
CO2	3	3	1				2	2	2	2	1	3
CO3		3	2				1	-	2	-	1	3
CO4	2		2				1	3	1	1	1	
Avg	2.3 3	2.6 7	1.6 7	-	-	-	1.5	2.6 7	2	2	1	2.6 7

Syllabus (PEC-IT501B)

Unit	Content	Hrs/Unit	Marks/
			Unit
1	Introduction [2]	6	
	Overview of Artificial intelligence- Problems of AI,		
	AI technique, Tic - Tac - Toe problem.		
	Intelligent Agents [2]		
	Agents & environment, nature of environment,		
	structure of agents, goal based agents, utility based		
	agents, learning agents.		
	Problem Solving [2]		
	Problems, Problem Space & search: Defining the		
	problem as statespace search, production system,		
	problem characteristics,		
	issues in the design of search programs.		
2.	Search techniques [5]	13	
	Solving problems by searching: problem solving		
	agents, searching for solutions; uniform search		
	strategies: breadth first search, depth first search,		
	depth limited search, bidirectional search, comparing		
	uniform search strategies.		
	Heuristic search strategies [5]		
	Greedy best-first search, A* search, memory		
	bounded heuristic search:local search algorithms &		
	optimization problems: Hill climbing search, simulated annealing search,		
	local beam search, genetic algorithms; constraint		
	satisfaction problems, local search for constraint		
	satisfaction problems, local search for constraint satisfaction problems.	-	
	Adversarial search [3]		
	Games, optimal decisions & strategies in games, the minimax search procedure, alpha-beta pruning,		
	additional refinements, iterative deepening.	,	
	autitional refinements, nerative ucepetiling.		

3	Knowledge & reasoning [3]	3	
	Knowledge representation issues, representation &		
	mapping, approaches to knowledge representation,		
	issues in knowledgerepresentation.		
4	Using predicate logic [2]	6	
	Representing simple fact in logic, representing		
	instant & ISArelationship, computable functions &		
	predicates, resolution, natural deduction.		
	Probabilistic reasoning [4]		
	Representing knowledge in an uncertain domain, the		
	semantics of Bayesian networks, Dempster-Shafer		
	theory, Fuzzy sets & fuzzy logics.		
5	Natural Language processing [2]	6	
	Introduction, Syntactic processing, semantic		
	analysis, discourse &pragmatic processing.		
	Learning [2]		
	Forms of learning, inductive learning, learning		
	decision trees, explanation based learning, learning		
	using relevance information, neural net learning &		
	genetic learning.		
	Expert Systems [2]		
	Representing and using domain knowledge, expert		
	system shells, knowledge acquisition.		

Books

- 1. Artificial Intelligence, Ritch & Knight, TMH
- 2. Artificial Intelligence A Modern Approach, Stuart Russel Peter Norvig Pearson
- 3. Introduction to Artificial Intelligence & Expert Systems, Patterson, PHI
- 4. Poole, Computational Intelligence, OUP
- 5. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 6. Expert Systems, Giarranto, VIKAS
- 7. M.C. Trivedi, Artificial Intelligence, Khanna Publishing House, New Delhi(AICTERecommended Textbook 2018)

Department of Computer Science and Engineering

PEC-IT501C : Advanced Computer Architecture

Course Outcome (CO)

Student will be able to:

CO1	Describe the designing principles of pipelines
CO2	Explain different types of processor used in a computer.
CO3	Classify different categories of memory and operations performed by them
CO4	Explain different computer architectures and assess the performance of a computer

	PEC-IT501C : Advanced Computer Architecture												
со,	PO'S												
S	PO 1	PO 2	РО 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	
C01	3	2	1	1	-	2	-	2	-	-	2-	-	
CO2	2	3	2	1	3	3	2	3	2	-	-	2	
CO3	1	2	3	1	3	2	1	2	3	2	3	2	
CO4	1	2	2	3	2	-	-	-	-	1	2	3	
Avg	1.7 5	2.2 5	2.0 0	1.5 0	2.6 7	2.3 3	1.5 0	2.3 3	2.5 0	1.50	2.50	2.33	

Syllabus (PEC-IT501C)

Unit	Content	Hrs/Unit	Marks/ Unit
1	Computer Architecture and Organization- Review, Fundamentals ofComputer Design, Technology Trends Cost Performance Analysis (3L) Parallel Processing Architectures Taxonomy- SISD,SIMD,MIMD, PRAM models(3L) SISD,MISD,SIMD,MIMD, PRAM models (3L)		
2.	Data and Resource Dependencies, Program Partitioning and Scheduling, Control Flow vs. Data Flow (3L) Network topologies-Static, Dynamic, Types of Networks (3L) RISC vs. CISC, Memory Hierarchy, Virtual Memory (4L)		
3	Concepts of Pipelining, Instruction Pipelining, dynamic pipelining, arithmetic pipelines. (4L) Multiprocessors- Multistage Networks, Cache Coherence, Synchronization, Message- passing (4L) Vector Processing Principles- Instruction types, Compound, Vector Loops, Chaining (4L)		
4	Array Processors- Structure, Algorithms (3L) Data Flow Architecture- Graphs. Petri Nets, Static and Dynamic DFA, VLSI Computations (4L) Parallel Programming Models, Languages, Compilers (4L)		

Text book and Reference books:

- 1.Computer Architecture and Parallel Processing- Kai Hwang and A. Brigggs InternationalEdition, McGraw Hill
- 2. Advanced Computer Architecture: D. Sima, T. fountain, P. Kacsuk, Pearson
- 3. Parallel Computer Architecture: D. Culler, J.P.Singh, A.Gupta, Elsevier

PEC-IT501D : Computer Graphics

Course Outcome (CO)

Student will be able to:

CO1	Learn comprehensive introduction about computer graphics system, design algorithms and two-dimensional transformations.
CO2	Familiar with techniques of clipping, three-dimensional graphics, and three-dimensional transformations.
CO3	Perform designing, developing, and testing of modeling, rendering, shading and animation.

Department of Computer Science and Engineering

	PEC-IT501D : Computer Graphics												
CO'	PO'S												
S	PO 1	РО 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	
C01	2	3	3		3		2	3	3		3	1	
CO2	2	3	2		1	2	2	3	2			2	
CO3	2	3	2	2	2		2	3	2	2	3	3	
Avg	2.0 0	3.0 0	2.3 3	2.0 0	2.0 0	2.0 0	2.0 0	3.0 0	2.3 3	2.00	3.00	2.00	

Syllabus (PEC-IT501D : Computer Graphics)

Unit	Content	Hrs/Unit	Marks/
		,	Unit
	Introduction to computer graphics &	14	
1	graphics systems [6L]:		
	Overview of computer graphics,	,	
	representing pictures, preparing, presenting	r	
	& interacting with pictures for presentations;		
	Visualization & image processing; RGB		
	color model, direct coding, look up table;		
	storage tube graphics display, Raster scan		
	display, 3D viewing devices, Plotters,		
	printers, digitizers, Light pens etc.; Active &		
	Passive graphics devices; Computer	•	
	graphics software.		
	Scan conversion[8L]:Points &lines, Line		
	drawing algorithms; DDA algorithm,		
	Bresenham's line algorithm, Circle		
	generation algorithm; Ellipse generating algorithm; scan line polygon, fill algorithm,		
	boundary fill algorithm, flood fill algorithm.		
	2D transformation & viewing [15L]:	20	
2	Basic transformations: translation, rotation,	-	
	scaling; Matrix representations &		
	homogeneous coordinates, transformations		
	between coordinate systems;		
	Reflection shear; Transformation of points,	,	
	lines, parallel lines, intersecting lines.		
	Viewing pipeline, Window to view port co-		
	ordinate transformation, clipping	r S	
	operations, point clipping, line clipping,		
	clipping circles, polygons & ellipse. Cohen	L	
	and Suther land line clipping,		
	Sutherland-Hodgeman Polygon clipping,		
	Cyrus-beck clipping method3D		

	transformation & viewing [5L]:		
	3D transformations: translation, rotation,		
	scaling & other		
	e		
	transformations. Rotation about an arbitrary		
	axis in space, reflection through anarbitrary		
	plane; general parallel projection		
	transformation; clipping, viewport clipping,		
	3D viewing.		
	Curves [3L]:Curve representation, surfaces,		
	designs, Bezier curves,	-	
3.	B-spline curves, end conditions for periodic	6	
	B-spline curves, rational B-spline curves.		
	Hidden surfaces[3L]:Depth comparison,		
	Z-buffer algorithm, Back face detection,		
	BSP tree method, the Painter's algorithm,		
	scan-line algorithm; Hidden line		
	elimination, wire framemethods, fractal-		
	geometry.		
	Color & shading models [2L]: Light &		
	color model; interpolative shading model;		
	Texture.		
	Introduction to Ray-tracing:[3L] Human		
	vision and color, Lighting, Reflection and		
	transmission models.		

Books

Text book and Reference books:

- 1. Hearn, Baker "ComputerGraphics(Cversion2ndEd.)"– Pearsoneducation
- 2. Z.Xiang, R.Plastock– "Schaum'soutlinesComputerGraphics(2ndEd.)"–TMH
- 3. D.F. Rogers, J.A.Adams-"MathematicalElementsforComputerGraphics(2ndEd.)"-TMH

MC-CS501 : Constitution of India

Course Outcome (CO)

Student will be able to:

CO1	Develop human values, create awareness about law ratification and significance of Constitution
CO2	Comprehend the Fundamental Rights and Fundamental Duties of the Indian Citizen to implant morality, social values, and their social responsibilities.
CO3	Create understanding of their Surroundings, Society, Social problems, and their suitable solutions.
CO4	Familiarize with distribution of powers and functions of Local Self Government.
CO5	Realize the National Emergency, Financial Emergency, and their impact on Economy of the country.

со,		PO'S										
S	PO 1	РО 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
C01	2	-	-	-	-	-	-	-	3	2	_	-
CO2	2	-	-	-	-	-	-	-	-	2	-	-
CO3	-	-	-	-	-	3	2	-	-	-	-	-
CO4	2	-	-	-	-	1	-	-	3	-	-	2
CO5	-	-		-	-	-	-	2	3	2	-	2
Avg	2	-	-	-	-	2	2	2	3	2	-	2

Department of Computer Science and Engineering

JIS GROUP

Syllabus (MC-CS501)

Unit	Content	Hrs/Unit	Marks/
			Unit
	Introduction:	3	
1	Constitution meaning of the term, Indian		
	Constitution: Sources and constitutional		
	history, Features: Citizenship, Preamble,		
	Fundamental Rights and Duties, Directive		
	Principles of State Policy		
	Union Government andits	6	
2	Administration:		
	Structure of the Indian Union: Federalism,		
	Centre-State relationship, President: Role,		
	power and position, PM and Council of		
	ministers, Cabinet and Central Secretariat,		
	Lok Sabha, Rajya Sabha		
	State Government and its		
3.	Administration Governor:	6	
	Role and Position, CM and Council of		
	ministers, State Secretariat: Organisation,		
	Structure and Functions		
4.	Local Administration District's	8	
	Administration head:		
	Role and Importance, Municipalities:		
	Introduction, Mayor and role of Elected		
	Representative, CEO of Municipal		
	Corporation, Pachayati raj: Introduction,		
	PRI: Zila Pachayat, Elected officials and		
	their roles, CEO Zila Pachayat: Position and		
	role, Block level: Organizational Hierarchy		
	(Different4.departments), Village level: Role		
	of Elected and Appointed officials,		
	Importance of grass root democracy		
5.	Election Commission Election	4	
	Commission:		
	Role and Functioning, Chief Election		

 Commissioner and Election	
Commissioners, State Election	
Commission: Role and Functioning,	
Institute and Bodies for the welfare of	
SC/ST/OBC and women	

Books

Text book and Reference books:

- 1. 'Indian Polity' by Laxmikanth
- 2. 'Indian Administration' by Subhash Kashyap
- 3. 'Indian Constitution' by D.D.Basu
- 4. 'Indian Administration' by Avasti and Avasti

Department of Computer Science and Engineering

ESC591 : Software Engineering Lab

Course Outcome (CO)

Student will be able to:

F	
CO1	To understand the software engineering methodologies involved in the phases for project development.
CO2	Choose appropriate process model depending on the user requirements.
CO3	Perform various life cycle activities like Analysis, Design, Implementation, Testing and Maintenance.
CO4	Apply the knowledge, techniques, and skills in the development of a software product

	ESC591 : Software Engineering Lab												
CO,		PO'S											
s	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO8	PO 9	PO1 0	PO1 1	PO1 2	
C01	3	-	2	-	3	-	-	1	3	2	1	-	
CO2	2	3	2	-	-	-	-	2	3	3	1	-	
CO3	2	1	1	-	-	-		-	3	3	-	3	
CO4	3	2	1	-	2	-	-	2	3	3	1	3	
Avg	2.5	2	1.5	-	2.5	-	-	1.6 7	3	2.7 5	1	3	

Syllabus (ESC591)

Unit	Content	Hrs/Unit	Marks
			/Unit
1	Problem Analysis and Project Planning -		
	Thorough study of the problem – Identify		
	Project scope, Objectives and Infrastructure.		
2	Software Requirement Analysis – Describe the individual Phases/modules of the projec and Identify deliverables. Identify functional and non-functiona requirements.	t	
3	Data Modeling – Use work products – data dictionary.	a	
4	Software Designing - Develop use case diagrams and activity diagrams, build and test class diagrams, sequence diagrams and add interface to class diagrams.		
5	Prototype model – Develop the prototype of the product.		

Books

- 1. Mastering Uml with Rational Rose by Wendy Boggs (Wiley India Private Limited)
- Rational Rose Essentials: Using the Booch Method by by Iseult White (Benjamin-Cummings Publishing Company, Subs of Addison Wesley Longman,)

Department of Computer Science and Engineering

PCC-CS592 : Operating System Lab

Course Outcome (CO)

Student will be able to:

CO1	Students will be able to understand the role and responsibilities
	of OS in the computer system and analyze the concepts of
	processes in operating system and illustration of the scheduling
	of processor for a given problem instance.
CO2	Students will be able to identify the dead lock situation and
	provide appropriate solution so that protection & security of the
	operating system is also maintained.
CO3	Students will be able to analyze memory management
	techniques, concepts of virtual memory and disk scheduling.
CO4	Students will be able to understand the implementation of file
	systems and directories along with the interfacing of IO devices
	with the operating system.

	PCC-CS592 : Operating System Lab											
CO'	PO'S											
S	PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
C01	2	-	2	-	-	-	-	3	-	3	-	-
CO2	2	-	2	-	-	2	-	2	2	3	-	-
CO3	-	1	2	-	-	2	-	-	2	3	-	3
CO4	2	2	2	-	-	-	-	3	2	3	-	2
Avg	2	1.5	2	-	-	2	-	2.6 7	2	3	-	2.5

	Syllabus (PCC-CS592)		
Unit	Content	Hrs/Unit	Marks/ Unit
1	Managing Unix/Linux Operating System [8P]: Creating a bash shell script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands). Partitions, Swap space, Device files, Raw and Block files, Formatting disks, Making file systems, Superblock, I-nodes, File system checker, Mounting file systems, Logical Volumes, Network File systems, Backup schedules and Methods Kernel loading, init and the inittab file, Run-levels, Run level scripts. Password file management, Password security, Shadow file, Groups and the group file, Shells, restricted shells, user- management commands, homes and permissions, default files, profiles, locking accounts, setting	8	
	passwords, Switching user, Switching group, Removing users & user groups.		
2	Process [4P]: starting new process, replacing a process image, duplicating a process image, waiting for a process, zombie process.	5	

3	Signal [4P]: signal handling, sending signals, signal interface, signal sets.	4	
4	Semaphore [6P]: programming with semaphores (use functions semctl, semget, semop, set_semvalue, del_semvalue, semaphore_p, semaphore_v).		
5	POSIX Threads [6P]: programming with pthread functions (viz.pthread_create,pthread_join,pthread_e xit,pthread_attr_init, pthread_cancel)		
6	Inter-process communication [6P]: pipes(use functions pipe, popen, pclose), named pipes(FIFOs, accessing FIFO), message passing & shared memory(IPC version V).	6	

Books

- 1. Operating System Concepts Essentials, 9th Edition by Avi Silberschatz, Peter Galvin, Greg Gagne, Wiley Asia Student Edition.
- 2. Operating Systems: Internals and Design Principles, 5thEdition, William Stallings, Prentice Hall of India.
- 3. Operating System Concepts, Ekta Walia, Khanna Publishing House (AICTE Recommended Textbook -2018)
- 4. Operating System: A Design- oriented Approach,1st Edition by Charles Crowley, Irwin Publishing
- 5. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 6. Design of the Unix Operating Systems, 8thEditionby Maurice Bach, Prentice-Hall of India
- 7. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

PCC-CS593 : Object Oriented Programming Lab

Course Outcome (CO)

Student will be able to:

statin	t will be able to:
CO1	Students able to relate and understand the basic Object Oriented
	concepts.
CO2	Students learn to solve problem statements by applying Object
	Oriented Programming concepts.
CO3	Students categorize the implementation of various features of
	object oriented programming according to real world problems.
CO4	Students able to assess the pros and cons of each feature of
	object oriented programming.
CO5	Students able to design different application based software
	tools.

	PCC-CS593 : Object Oriented Programming Lab)				
CO'S	PO'S											
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	-	-	-	-	2	3	-	3
CO2	-	3	2	-	-	-	-	2	3	3	-	-
CO3	2	3	3	3	3	-	-	-	2	-	-	3
CO4	-	2	3	3	-	-	-	-	3	3	-	2
C05	2	2	3	-	3	-	-	2	3	3	-	-
Avg	2	2.6	2.8	3	3	-	-	2	2.6	3	-	2.67

Syllabus (PCC-CS593)

Unit	Content	Hrs/Unit	Marks /Unit
1	Assignments on class, constructor, overloading, inheritance, overriding		
2	Assignments on wrapper class, arrays		
3	Assignments on developing interfaces- multiple inheritance, extending interfaces		
4	Assignments on creating and accessing packages		
5	Assignments on multithreaded programming		
6	Assignments on applet programming		

Books

Text book and Reference books:

- 1. Ali Bahrami–"Object Oriented System Development"–Mc Graw Hill
- 2. Patrick Naughton, Herbert Schildt–"Thecompletereference-Java2" -TMH
- 3. R.K Das-"Core Java For Beginners"-VIKASPUBLISHING
- 4. Deitel and Deitel-"Java How to Program" -6th Ed. -Pearson
- 5. Ivor Horton's Beginning Java 2SDK-Wrox
- 6. E.Balagurusamy–"Programming With Java: A Primer"–3rdEd.– TMH
- 7.Rambaugh, James Michael, Blaha "Object Oriented Modelling and Design" – Prentice Hall,India

Department of Computer Science and Engineering

3rd Yr/6th Semester

PCC-CS601: Database Management Systems

Course Outcome (CO)

Student will be able to:

CO1	Students relate a problem at view level and outline the					
	different level of abstractions of the database to handle					
	data.					
CO2	Students implement the logic by using (data modeling)					
	tools like ERD.					
CO3	Students analyze by normalizing the database to					
	understand the interrelated data and respective					
	dependencies.					
CO4	Students assess the importance of cost-optimized query					
	statements.					
CO5	Students extract data more efficiently after having a clear					
	understanding of transaction system.					

	Data Base Management System (CS601)											
		PO'S										
CO'S	PO1	PO1 PO2 PO PO PO PO PO PO PO PO PO PO1 PO1 PO1										
CO1	2	2	-	-	-	-	-	2	-	1	1	-
CO2	-	-	2	-	1	-	-	-	1	-	2	2
CO3	1	3	-	-	-	-	-	2	2	1	2	2

Department of Computer Science and Engineering

CO4	3	2	2	-	-	-	-	-	2	-	2	3
CO5	3	2	-	-	2	-	-	-	2	-	3	-
Averag e	2.2 5	2.2 5	2	-	1. 5	-	-	2	1.7 5	1	2	2.3 3

Syllabus (PCC-CS601)

Unit	Content	Hrs/Unit	Marks/Unit
1	Database system architecture:	9	
	Data Abstraction, Data		
	Independence, Data Definition		
	Language (DDL), Data		
	Manipulation Language (DML).		
	Data models: Entity-relationship		
	model, network model, relational		
	and object oriented data models,		
	integrity constraints, data		
	manipulation operations.		

		12	
2	Relational query languages:	13	
	Relational algebra, Tuple and		
	domain relational calculus, SQL3.		
	DDL and DML constructs, Open		
	source and Commercial DBMS -		
	MYSQL, ORACLE, DB2, SQL		
	server.		
	Relational database design:		
	Domain and data dependency,		
	Armstrong's axioms, Normal		
	forms, Dependency		
	preservation, Lossless design.		
	Query processing and		
	optimization: Evaluation of		
	relational algebra expressions,		
	Query equivalence, Join strategies,		
	Query optimization algorithms.		
3	Storage strategies: Indices, B-	3	
	trees, hashing.		
4	Transaction processing:	5	
	Concurrency control, ACID		
	property, Serializability of		
	scheduling, Locking and timestamp		
	based schedulers, Multi- version		
	and optimistic Concurrency Control		
	schemes, Database recovery.		
5		_	
-	Database Security:	3	
_	Database Security: Authentication, Authorization and	3	
	•	3	
	Authentication, Authorization and	3	
	Authentication, Authorization and access control, DAC, MAC and	3	
6	Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion	3	
	Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection. Advanced topics: Object oriented		
	Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection. Advanced topics: Object oriented and object relational databases,		
	Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection. Advanced topics: Object oriented		
-	Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection. Advanced topics: Object oriented and object relational databases, Logical databases, Web databases,		

Books

- 1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan,McGraw-Hill.
- "Principles of Database and Knowledge Base Systems", Vol 1 by J. D. Ullman, Computer Science Press.
- Database Management Systems, R.P. Mahapatra, Khanna Publishing House, New Delhi (AICTE Recommended Textbook – 2018)
- 4. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe.
- 5. Pearson Education "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley.

PCC-CS602: Computer Networks

Course Outcome (CO)

Student will be able to:

CO1	Students will be able to describe the components of data communication system and the purpose of layered architecture.					
CO2	Students will be able to explain and illustrate the application of each layer of OSI and TCP/IP reference model.					
CO3	Students will be able to explain different protocols.					
CO4	Students will be able to assess the functions of different layers.					

Department of Computer Science and Engineering

CO-PO Mapping

Computer Networks (CS602)												
	PO'S	5										
CO'S	Р О 1	P O 2	P O 3	Р О 4	P O 5	P O 6	Р О 7	P O 8	P O 9	PO 10	PO 11	PO 12
CO1	3	-	-	-	2	2	-	-	-	-	-	2
CO2	3	3	-	2	1	2	-	3	-	2	-	1
CO3	2	3	-	-	3	1	-	3	-	-	-	2
CO4	2	2	-	2	-	2	-	2	3	2	-	-
Aver age	2.5	2.6 7	-	2	2	1.7 5	-	2.6 7	3	2	-	1.6 7

Syllabus (PCC-CS602)

Unit	Content	Hrs/Unit	Marks/Unit
	Data communication Components:		
	Representation of data and its flow Networks,	9	
	Various Connection Topology, Protocols and		
	Standards, OSI model, Transmission Media,		
	LAN: Wired LAN, Wireless LANs, Connecting		
	LAN and Virtual LAN, Techniques for		
	Bandwidth utilization: Multiplexing - Frequency		
	division, Time division and Wave division,		
	Concepts on spread spectrum.		
	Data Link Layer and Medium Access Sub	8	
	Layer: Error Detection and Error Correction -		
	Fundamentals, Block coding, Hamming		
	Distance, CRC; Flow Control and Error control		
	protocols - Stop and Wait, Go back – N ARQ,		
	Selective Repeat ARQ,		
	Sliding Window, Piggybacking, Random		
	Access, Multiple access protocols -Pure		
	ALOHA, Slotted LOHA, CSMA/CD, CDMA/CA.		
3	Network Layer: Switching, Logical addressing	14	
	– IPV4, IPV6; Address mapping – ARP, RARP,		
	BOOTP and DHCP–Delivery, Forwarding and		
	Unicast Routing protocols.		
4	Transport Layer: Process to Process	8	
	Communication, User Datagram Protocol (UDP),	-	
	Transmission Control Protocol (TCP), SCTP		
	Congestion Control; Quality of Service, QoS		
	improving techniques:		
	Leaky Bucket and Token Bucket algorithm.		
	Application Layer: Domain Name Space (DNS)	. 8	
	DDNS, TELNET,		
	EMAIL, File Transfer Protocol (FTP), WWW,		
	HTTP, SNMP, Bluetooth, Firewalls, Basic		
	concepts of Cryptography.		

Books

- 1. Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.
- 4. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House, New Delhi.

PEC-IT601 A: Advanced Algorithms

Course Outcome (CO)

Student will be able to:

CO1	Analyze the complexity/performance of different algorithms.
CO2	Determine the appropriate data structure for solving a particular set of problems.
CO3	Categorize the different problems in various classes according to their complexity.
CO4	Students should have an insight of recent activities in the field of the advanced data structure.

CO-PO Mapping

	Advanced Algorithms (PEC-IT601 A)											
	PO'S											
CO'S	Р 01	P O 2	Р О3	Р О4	Р 05	Р О 6	Р О 7	Р О 8	P O 9	PO 10	PO 11	PO 12
C01	3	3	2	2	1	_	_	1	1	1	_	1
CO2	2	3	3	1	1	_	2	_	_	_	_	_
CO3	2	2	1	3	-	1	-	-	-	1	-	-
CO4	2	2	1	1	3	2	_	1	1	-	1	1
Aver	2.	2.	1.	1.	1.	1.	2.	1.	1.			
age	25	5	75	75	67	5	0	0	0	1.0	1.0	1.0

Syllabus (PEC-IT601 A)

Unit	Content	Hrs/Unit	Marks/Unit
1	Sorting: Review of various sorting algorithms, topological sorting Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkasra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.		
	Matroids: Introduction to greedy paradigm, algorithm to compute a	8	

maximum weight maximal independ set. Application to MST.Graph Matching: Algorithm to comp maximum matching. Characterization maximum matching by augmenting pat Edmond's Blossom algorithm to comp	ute of hs,
augmenting path.Flow-Networks:Maxflow-mintheorem, Ford-FulkersonMethodCompute maximum flow, Edmond-Kmaximum-flow algorithm.MatrixMatrixComputations:Strassealgorithm and introduction to divide anconquer paradigm, inverse of a triangumatrix, relationbetweenthe ticomplexities of basic matrix operationLUP-decomposition.	to arp en's d ilar me
 Shortest Path in Graphs: Floyd-Warsh algorithm and introduction to dynamic programming paradigm. More examples dynamic programming. Modulo Representation of integet polynomials: Chinese Remain Theorem, Conversion between baarepresentation and modulo-representatii Extension to polynomials. Applicatii Interpolation problem. Discrete Four Transform (DFT): In complex field, D in modulo ring. Fast Fourier Transfor algorithm. Schonhage-Strassen Inter Multiplication algorithm 	nic s of ers/ der lse- on. on: on: ier FT orm

	Linear Programming: Geometry of the	10	
4.	feasibility region and Simplex algorithm		
	NP-completeness: Examples, proof of		
	NP-hardness and NP-completeness.		
	One or more of the following topics		
	based on time and interest		
	Approximation algorithms, Randomized		
	Algorithms, Interior Point Method,		
	Advanced Number Theoretic Algorithm		
5	Recent Trends in problem solving	5	
	paradigms using recent searching and		
	sorting techniques by applying recently		
	proposed data structures.		

- 1. "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.
- 4. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House, New Delhi.

PEC-IT601 B: Distributed Systems

Course Outcome (CO)

Student will be able to:

CO1	Students able to relate basics of Distributed Systems and its components with respect to Distributed Database management system.						
CO2	Analyze the complexity/performance of different algorithms in the field of distributed system.						

Department of Computer Science and Engineering

CO3	Determine the appropriate data structure for solving								
	problems related to distributed systems and categorize								
	them in various classes according to their complexity.								
CO4	Students should have an insight of recent activities in the								
	field of the distributed system.								

CO-PO Mapping

Distrib	Distributed Systems (PEC-IT601 B)											
PO'S												
CO'S	P O 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	P O 9	PO 10	PO 11	PO 12
CO1	2	1	2	1	-	1	-	-	-	1	-	2
CO2	2	3	2	2	1	1	-	-	-	-	-	-
CO3	2	2	3	1	1	1	-	1	-	-	-	-
CO4	-	-	-	-	-	1	-	1	2	1	-	2
Aver age	2	2	2.3 3	1.3 3	1	1	-	1	2	1	-	2

Syllabus (PEC-IT601 B)

Unit Content	Hrs/Unit	Marks/Unit
--------------	----------	------------

	INTRODUCTION		
1	Distributed data processing; What is a	8	
	DDBS; Advantages and disadvantages of		
	DDBS; Problem areas; Overview of		
	database and computer network concepts		
	DISTRIBUTED DATABASE		
	MANAGEMENT SYSTEM		
	ARCHITECTURE		
	Transparencies in a distributed DBMS;		
	Distributed		
	DBMS architecture; Global directory		
	issues		
	DISTRIBUTED DATABASE DESIGN	11	
2	Alternative design strategies; Distributed		
	design issues; Fragmentation; Data		
	allocation SEMANTICS DATA		
	CONTROL		
	View management; Data security;		
	Semantic Integrity Control QUERY		
	PROCESSING ISSUES		
	Objectives of query processing;		
	Characterization of query processors;		
	Layers of query processing; Query		
	decomposition; Localization of		
	distributed data		
-			

QUERY 11 DISTRIBUTED 3 **OPTIMIZATION** Factors governing query optimization; Centralized query optimization; Ordering of fragment queries; Distributed query optimization algorithms TRANSACTION MANAGEMENT The transaction concept; Goals of transaction management; Characteristics of transactions; Taxonomy of transaction models CONCURRENCY CONTROL Concurrency control in centralized database systems; Concurrency control in DDBSs; Distributed concurrency control algorithms; Deadlock management Reliability issues in DDBSs; Types of 8 4. failures; Reliability techniques; Commit protocols; Recovery protocols Algorithm PARALLEL DATABASE SYSTEMS 5 6 Parallel architectures; parallel query processing and 6 ADVANCED TOPICS Mobile 4 Databases, Distributed Object Management, Multi-databases

- 1. Principles of Distributed Database Systems, M.T. Ozsu and P. Valduriez, Prentice-Hall, 1991.
- 2. Distributed Database Systems, D. Bell and J. Grimson, Addison- Wesley, 1992.

PEC-IT601 C: Signals & Systems

Course Outcome (CO)

Student will be able to:

odic-
-random,
se and unit
nd systems
ality, time
urier series
1 4
ies and its
ng Fourier
es of ROC,
integration
nd Partial
ind i dittai
·
, types of
es, aliasing
perties like
moments,

Department of Computer Science and Engineering

Signals & Systems (PEC-IT601 C)															
		PO'S													
CO'S	Р О 1	Р О2	Р О3	Р 04	Р 05	Р 06	Р 07	Р 08	Р О9	PO 10	PO 11	PO 12			
CO1	3	2	1	_	_	1	1	_	_	_	1	1			
CO2	2	3	2	2	_	1	1	1	_	_	2	1			
CO3	2	3	2	2	2	1	_	1	2	1	2	1			
CO4	2	2	1	2	2	1	1	1	2	1	2	1			
CO5	2	1	1	2	_	2	2	1	2	1	2	2			
Avera ge	2. 2	2. 2	1. 4	2. 0	2. 0	1. 2	1. 25	1. 0	2. 0	1.0	1.8	1.2			

Department of Computer Science and Engineering

Syllabus (PEC-IT601 C)

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction to Signals and Systems :		
1	Signals and systems as seen in everyday life,	3	
	and in various branches of engineering and		
	science. Signal properties: periodicity,		
	absolute integrability, determinism and		
	stochastic character. Some special signals of		
	importance: the unit step, the unit impulse,		
	the sinusoid, the complex exponential, some		
	special time-limited signals; continuous and		
	discrete time signals, continuous and discrete		
	amplitude signals. System properties:		
	linearity: additivity and homogeneity, shift-		
	invariance, causality, stability, realizability.		
	Examples.		
	Behavior of continuous and discrete-time		
2	LTI systems (8 hours)	8	
	Impulse response and step response,		
	convolution, input-output behavior with		
	periodic convergent inputs, cascade		
	interconnections. Characterization of		
	causality and stability of LTI systems.		
	System representation through differential		
	equations and difference equations. State-		
	space Representation of systems. State-Space		
	Analysis, Multi-input, multi- output		
	representation. State Transition Matrix and		
	its Role. Periodic inputs to an LTI system, the notion of a frequency response and its		
	relation to the impulse response.		
	relation to the impulse response.		

1		[1
	Fourier, Laplace and z- Transforms		
3	Fourier series representation of periodic		
	signals, Waveform Symmetries, Calculation		
	of Fourier Coefficients. Fourier Transform,		
	convolution/multiplication and their effect in		
	the frequency domain, magnitude and phase		
	response, Fourier domain duality. The		
	Discrete- Time Fourier Transform (DTFT)		
	and the Discrete Fourier Transform (DFT).		
	Parseval's Theorem. Review of the Laplace		
	Transform for continuous time signals and		
	systems, system functions, poles and zeros of		
	system functions and signals, Laplace		
	domain analysis, solution to differential		
	equations and system behavior. The z-		
	Transform for discrete time signals and		
	systems, system functions, poles and		
	zeros of systems and sequences, z-domain		
	analysis.		
	The Sampling Theorem and its implications.		
4.	Spectra of sampled signals. Reconstruction:	9	
	ideal interpolator, zero- order hold, first-order		
	hold. Aliasing and its effects. Relation		
	between continuous and discrete time		
	systems. Introduction to the applications of		
	signal and system theory: modulation for		
	communication, filtering, feedback control		
	systems.		

Department of Computer Science and Engineering

- 1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signalsand systems", Prentice Hall India, 1997.
- 2. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", Pearson, 2006.
- 3. H. P. Hsu, "Signals and systems", Schaum'sseries, McGraw Hill Edition, 2010.
- 4. S. Haykinand B. V. Veen, "Signals and Systems", John Wiley and Sons,2007.
- 5. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.
- 6. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 7. B. P. Lathi, "LinearSystems and Signals", Oxford University Press, 2009.
- 8. R. Anand, "Signals and Systems, Khanna Publishing House, 2018.

PEC-IT601 D: Image Processing

Course Outcome (CO)

Student will be able to:

CO1	Develop a theoretical foundation of fundamental concepts of image processing.
CO2	Understand the mathematical foundations for image representation, image acquisition, image transformation, and image enhancement.
CO3	Realize the mathematical principles of image restoration, image compression, and image segmentation

Image Processing (PEC-IT601 D)															
		PO'S													
co's	Ρ	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	DO	DO				
	0	0	0	0	0	0	0	0	0	РО 10	РО 11	PO 12			
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	1	1	1	-	-	-	_	2	2			
CO2	_	3	3	_	3	2	2	2	2	_	2	_			
CO3	2	_	_	_	_	_	_	2	2	2	1	-			
Aver	2.	2.	2.	1.	2.	1.	2.	2.	2.		1.6				
age	5	5	5	0	0	5	0	0	0	2.0	7	2.0			

Syllabus (PEC-IT601 C)

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction [3L]	9	
	Background, Digital Image		
	Representation, Fundamental steps in		
	Image Processing, Elements of Digital		
	Image Processing - Image Acquisition,		
	Storage, Processing, Communication,		
	Display.		
	Digital Image Formation [4L]	4	
2	A Simple Image Model, Geometric		
	Model- Basic Transformation		
	(Translation, Scaling, Rotation),		
	Perspective Projection, Sampling &		
	Quantization - Uniform & Non uniform.		
	Mathematical Preliminaries[9L]	9	
3	Neighbour of pixels, Connectivity,		
	Relations, Equivalence & Transitive		
	Closure; Distance Measures,		
	Arithmetic/Logic Operations, Fourier		
	Transformation, Properties of The Two		
	Dimensional Fourier Transform, Discrete		
	Fourier Transform, Discrete Cosine &		
	Sine Transform.		

	Image Enhancement [8L]	8	
4.	Spatial Domain Method, Frequency		
	Domain Method, Contrast Enhancement -		
	Linear & Nonlinear Stretching, Histogram		
	Processing; Smoothing - Image		
	Averaging, Mean Filter, Low-pass		
	Filtering; Image Sharpening. High- pass		
	Filtering, High- boost Filtering,		
	Derivative Filtering, Homomorphic		
	Filtering; Enhancement in the frequency		
	domain - Low pass filtering, High pass		
	filtering.		
5	Image Restoration [7L]	7	
	Degradation Model, Discrete		
	Formulation, Algebraic Approach to		
	Restoration - Unconstrained &		
	Constrained; Constrained Least Square		
	Restoration, Restoration by		
	Homomorphic Filtering, Geometric		
	Transformation - Spatial Transformation,		
	Gray Level Interpolation.		
6	Image Segmentation [7L]	7	
	Point Detection, Line Detection, Edge		
	detection, Combined detection, Edge		
	Linking & Boundary Detection - Local		
	Processing, Global Processing via The		
	Hough Transform; Thresholding -		
	Foundation, Simple Global Thresholding,		
	Optimal Thresholding; Region Oriented		
	Segmentation - Basic Formulation,		
	Region Growing by Pixel Aggregation,		
	Region Splitting & Merging.		
	region spinning & morging.		

Department of Computer Science and Engineering

Books

- 1. Hearn, Baker "Computer Graphics (C version 2nd Ed.)" Pearson education.
- 2. Z. Xiang, R. Plastock "Schaum's outlines Computer Graphics (2nd Ed.)" TMH.
- 3. D. F. Rogers, J. A. Adams "Mathematical Elements for Computer Graphics (2nd Ed.)" TMH.

PEC-IT602 A: Parallel and Distributed Algorithms

Course Outcome (CO)

Student will be able to:

CO1	Study software components of distributed computing systems.								
	Know about the communication and interconnection								
	architecture of multiple computer systems.								
CO2	Recognize the inherent difficulties that arise due to								
	distributed-ness of computing e-sources.								
CO3	Understanding of networks & protocols, mobile & wireless computing, and their applications to real world problems.								
CO4	Familiar with the design, implementation, and security issues of distributed system.								

Department of Computer Science and Engineering

CO-PO Mapping

	Parallel and Distributed Algorithms (PEC-IT602 A)														
		PO'S													
co's	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	P O 9	PO 10	PO 11	PO 12			
CO1	2	2	1	1	3	-	-	-	-	_	2	_			
CO2	2	2	_	2	_	2	2	1	2	1	_	_			
CO3	2	-	_	_	2	3	3	_	-	-	3	3			
CO4	2	2	1	_	_	_	-	2	1	2	2	2			
Aver	2.	2.	1.	1.	2.	2.	2.	1.	1.		2.3				
age	0	0	0	5	5	5	5	5	5	1.5	4	2.5			

Syllabus (PEC-IT602 A)

Unit	Content	Hrs/Unit	Marks/Unit
1	UNIT-I :Basic Techniques, Parallel Computers for increase Computation speed, Parallel & Cluster Computing	8	
2	UNIT-II :Message Passing Technique- Evaluating Parallel programs and debugging, Portioning and Divide and Conquer strategies examples	8	
3	UNIT-III :Pipelining- Techniques computing platform, pipeline programs examples	8	

	UNIT-IV: Synchronous Computations, load		
4.	balancing, distributed termination examples,	11	
	programming with shared memory, shared		
	memory multiprocessor		
	constructs for specifying parallelism sharing		
	data parallel programming languages and		
	constructs, open MP		
5	UNIT-V :Distributed shared memory	9	
	systems and programming achieving		
	constant memory distributed		
	shared memory programming primitives,		
	algorithms – sorting and numerical		
	algorithms.		

- 1. Parallel Programming, Barry Wilkinson, Michael Allen, Pearson Education, 2nd Edition.
- 2. Introduction to Parallel algorithms by Jaja from Pearson, 1992.

PEC-IT602 B: Data Warehousing and Data Mining

Course Outcome (CO)

Student will be able to:

CO1	Understand the basic principles, concepts and applications of data warehousing and data mining.
CO2	Realize Conceptual, Logical, and Physical design of Data
	Warehouses OLAP applications and OLAP deployment.
CO3	Acquire a good knowledge of the fundamental concepts that
	provide the foundation of data mining.
CO4	Learn recent trends in Distributed Warehousing and Data
	Mining.

Data	Data Warehousing and Data Mining (PEC-IT602 B)											
со	PO'S	5										
'S	РО 1	PO 2	PO 3	PO 4	PO 5	РО 6	PO 7	РО 8	РО 9	PO 10	PO 11	PO 12
CO 1	2	1	-	-	-	-	-	2	1	-	-	-
CO 2	2	2	-	3	1	1	-	-	-	-	-	2
CO 3	-	-	-	-	2	-	-	1	2	2	-	-
CO 4	-	-	-	-	-	-	-	-	-	-	-	-
Av g	2	1.5	-	3	1.5	1	-	1.5	1.5	2	-	2

Department of Computer Science and Engineering

Syllabus (PEC-IT602 B)

Unit	Content	Hrs/Unit	Marks/Unit
1	Unit 1: Introduction to Data Warehousing;	8	
	Data Mining: Mining frequent patterns,		
	association and correlations; Sequential		
	Pattern Mining concepts, primitives,		
	scalable methods;		
	Unit 2: Classification and prediction;		
2	Cluster Analysis – Types of Data in Cluster	8	
	Analysis,		
	Partitioning methods, Hierarchical Methods;		
	Transactional Patterns and other temporal		
	based frequent patterns,		
	Unit 3: Mining Time series Data,		
3	Periodicity Analysis for time related	8	
	sequence data, Trend analysis, Similarity		
	search		
	in Time-series analysis;		
	Unit 4: Mining Data Streams,		
4.	Methodologies for stream data processing	11	
	and stream data		
	systems, Frequent pattern mining in stream		
1	data, Sequential Pattern Mining in		
1	Data Streams, Classification of dynamic		
1	data streams, Class Imbalance Problem;		
1	Graph Mining; Social Network Analysis;		
1	modulation for communication, filtering,		
	feedback control systems.		

Unit 5: Web Mining, Mining the web page	9	
layout structure, mining web link structure,		
Mining multimedia data on the web,		
Automatic classification of web documents		
and web usage mining; Distributed Data		
Mining.		
Unit 6: Recent trends in Distributed	5	
Warehousing and Data Mining, Class		
Imbalance Problem; Graph Mining; Social		
Network Analysis.		
÷		

- 1. Data Warehousing Fundamentals for IT Professionals, Second Edition by Paulraj Ponniah, Wiley India.
- 2. Data Warehousing, Data Mining, & OLAP Second Edition by Alex Berson and Stephen J. Smith, Tata McGraw Hill Education.
- 3. Data warehouse Toolkit by Ralph Kimball, Wiley India.
- 4. Data Mining & Warehousing by Ikvinderpal Singh, Khanna Publishing House.
- 5. Jiawei Han and M Kamber, Data Mining Concepts and Techniques, Second Edition, Elsevier Publication, 2011.
- 6. Vipin Kumar, Introduction to Data Mining Pang-Ning Tan, Michael Steinbach, Addison Wesley, 2006.
- 7. G Dong and J Pei, Sequence Data Mining, Springer, 2007.

Department of Computer Science and Engineering

8.

PEC-IT602 C: Human Computer Interaction

Course Outcome (CO)

Student will be able to:

CO1	Differentiate between various software vulnerabilities.
CO2	Software process vulnerabilities for an organization.
CO3	Monitor resources consumption in a software.
CO4	Interrelate security and software development process.

	Human Computer Interaction (PEC-IT602 C)											
						F	o's					
CO'S	РО	PO	PO	PO	РО	РО	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	3	-	3	_	-	1	-	-	2	-
CO2	_	_	3	_	_	3	_	3	_	3	_	2
CO3	-	-	-	2	3	2	-	2	-	-	-	-
CO4	2	3	_	3	_	2	3	3	2	2	3	3
Avera						2.3		2.2				
ge	2.0	3.0	3.0	2.5	3.0	4	3.0	5	2.0	2.5	2.5	2.5

Department of Computer Science and Engineering

Syllabus (PEC-IT602 C)

Unit	Content		Marks/ Unit
			Unit
1	Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles – elements – interactivity- Paradigms.	9	
2	Interactive Design basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process – software life cycle	11	
	usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.		
3.	Cognitive models –Socio-Organizational issues and stake holder requirements –Communication and collaboration models-Hypertext, Multimedia and WWW.	8	
	Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.	8	
5.	Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.	8	
	Recent Trends: Speech Recognition and Translation, Multimodal System	3	

Department of Computer Science and Engineering

- 1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett.
- 2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software Security, Addison Wesley.

PEC-IT602 D: Pattern Recognition

Course Outcome (CO)

Student will be able to:

CO1	Characterize machine learning algorithms as supervised, semi-supervised, and unsupervised.
CO2	Apply support vector machines, regularized regression algorithms & machine learning toolboxes.
CO3	Understand the concept behind neural networks for learning non-linear functions & foundation of generative models.
CO4	Understand and apply unsupervised algorithms for clustering.
CO5	Realize the inference and learning algorithms for the hidden Markov model with latent variables.
CO6	Acquire knowledge of algorithms for learning Bayesian networks & reinforcement learning algorithms.

	Pattern Recognition (PEC-IT602 C)											
						Р	o's					
CO'S	P O 1	PO 2	P O 3	Р О 4	P O 5	PO 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12
CO1	2	2	1	_	-	-	_	-	-	_	2	_
CO2	_	_	3	_	3	2	_	_	_	_	2	2

Department of Computer Science and Engineering

CO3	2	2	_	3	_	_	_	2	3	1	2	_
CO4	2	2	_	2	3	3	_	2	3	2	3	3
CO5	_	_	2	3	_	2	3	_	_	_	2	-
CO6	-	3	2	2	-	-	3	_	_	_	2	2
Aver	2.	2.	2.	2.	3.	2.	3.	2.	3.		2.1	2.3
age	0	25	0	5	0	34	0	0	0	1.5	7	4

Syllabus (PEC-IT602 D)

			Marks/
		nit	Unit
1	Basics of pattern recognition	2	
	Bayesian decision theory 8L	8	
	Classifiers, Discriminant functions, Decision surfaces		
1	Normal density and discriminant functions Discrete		
Í	features		
	Parameter estimation methods 6L Maximum-	6	
-	Likelihood estimation Gaussian mixture models		
	Expectation-maximization method Bayesian		
e	estimation		
J	Hidden Markov models for sequential pattern	8	
4.	classification 8L		
]	Discrete hidden Markov models		
	Continuous density hidden Markov models		
5	Dimension reduction methods 3L	3	
	5.1. Fisher discriminant analysis 5.2Principal		
	component analysis.		
	Parzen-window method		
]	K-Nearest Neighbour method		

Department of Computer Science and Engineering

6	Non parametrictechniques for density estimation	2	
7	Linear discriminant function based classifier 5L	5	
	Perceptron		
	Support vector machines		
8	Non-metric methods for pattern classification 4L	4	
	Non-numeric data or nominal data Decision trees		
9	Unsupervised learning and clustering 2L Criterion	2	
	functions for clustering Algorithms for clustering: K-		
	means, Hierarchical and other methods		

- 1. R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, John Wiley, 2001.
- 2. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.
- 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

OEC-IT601 A: Numerical Methods

Course Outcome (CO)

Student will be able to:

CO1	Develop numerical methods for approximately solving problems.
CO2	Examine the accuracy of these methods
CO3	Examine the failure modes of these methods
CO4	Demonstrate knowledge and understanding of numerical methods to solve systems of linear equations, to compute quadratures and to solve Ordinary and Partial Differential Equations

	PO	PO	РО	РО	РО	РО	РО	PO	РО	PO	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	1	2	-	-	-	-	-	1	-	2
CO2	3	3	1	2	-	-	-	2	2	-	2	2
CO3	3	3	1	2	-	-	-	2	2	-	2	2
CO4	3	3	1	2	-	-	-	-	-	-	2	2
Avg	3	3	1	2	-	-	-	2	2	1	2	2

Syllabus (OEC-IT601 A)

Unit	Content	Hrs/ Unit	Marks /Unit
1	Approximation in numerical computation: Truncation and rounding errors, Fixed and floating- point arithmetic, Propagation of errors.	2	
2	Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.	8	
3	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3	
4	Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method.	8	
5	Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton- Raphson method.	3	
6	Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor- Corrector methods and Finite Difference method.	2	

Department of Computer Science and Engineering

- 1. R. S. Salaria: Computer Oriented Numerical Methods, Khanna Publishing House.
- 2. C. Xavier: C Language and Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J. B. Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar , & Jain: Numerical Methods (Problems and Solution).

OEC-IT601 B: Human Resource Development and Organizational Behavior

Course Outcome (CO)

Student will be able to:

CO1	Demonstrate the applicability of the concept of organizational behavior to understand the behavior of people in the organization and the applicability of analyzing the complexities associated with management of individual behavior in the organization.				
CO2	Analyze the complexities associated with management of the group behavior in the organization. Analyze how the organizational behavior can integrate in understanding the motivation (why) behind behavior of people in the organization.				
CO3	Develop the understanding of the concept of human resource management and to understand its relevance in organizations and necessary skill set for application of various HR issues.				
CO4	Analyze the strategic issues and strategies required to select and develop manpower resources.				
CO5	Integrate the knowledge of HR concepts to take correct business decisions.				

Human Resource Development and Organizational Behavior (OEC-							
	IT601 B)						
CO'S	PO'S						

Department of Computer Science and Engineering

	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	РО	РО	РО
	01	02	03	04	05	06	07	08	09	10	11	12
CO1	3	_	3	-	2	2	3	-	-	_	2	2
CO2	3	3	1	2	1	2	3	3	_	2	2	1
CO3	2	3	-	-	3	1	2	3	-	3	2	2
CO4	2	2	3	2	-	2	2	2	3	2	-	-
CO5	_	_	2	3	_	_	_	3	2	-	3	2
Aver	2.	2.	2.	2.	2.	1.	2.	2.	2.	2.3	2.2	1.7
age	50	67	00	34	00	75	50	75	50	4	5	5

Syllabus (OEC-IT601 B)

Unit	Content	Hrs/	Marks/
		Unit	Unit
	Organizational Behavior: Definition, Importance,		
1	Historical Background, Fundamental Concepts of	4	
	OB, Challenges and Opportunities for OB. [2]		
	Personality and Attitudes: Meaning of personality,		
	Personality Determinants and Traits, Development		
	of Personality, Types of Attitudes, Job Satisfaction.		
	Perception: Definition, Nature and Importance,	8	
2	Factors influencing Perception, Perceptual		
	Selectivity, Link between Perception and Decision		
	Making. [2]		
	4. Motivation: Definition, Theories of Motivation -		
	Maslow's Hierarchy of Needs Theory, McGregor's		
	Theory X & Y, Herzberg's Motivation-Hygiene		
	Theory, Alderfer's ERG Theory, McClelland's		
	Theory of Needs, Vroom's Expectancy Theory.		

3	Group Behaviour: Characteristics of Group, Types of Groups, Stages of Group Development, Group Decision Making. [2] Communication: Communication Process, Direction of Communication, Barriers to Effective Communication. [2] Leadership: Definition, Importance, Theories of Leadership Styles.	4	
4.	Organizational Politics: Definition, Factors contributing to Political Behaviour. [2] Conflict Management: Traditional vis-a-vis Modern View of Conflict, Functional and Dysfunctional Conflict, Conflict Process, Negotiation – Bargaining Strategies, Negotiation Process. [2] Organizational Design: Various Organizational Structures and their Effects on Human Behaviour, Concepts of Organizational Climate and Organizational Culture.	8	

- 1. Robbins, S. P. & Judge, T.A.: Organizational Behavior, Pearson Education, 15th Edn.
- 2. Luthans, Fred: Organizational Behavior, McGraw Hill, 12th Edn.
- 3. Shukla, Madhukar: Understanding Organizations Organizational Theory & Practice in India, PHI.
- 4. Fincham, R. & Rhodes, P.: Principles of Organizational Behaviour, OUP, 4th Edn.
- Hersey, P., Blanchard, K.H., Johnson, D.E.-Management of Organizational Behavior Leading Human Resources, PHI, 10th Edn.

Department of Computer Science and Engineering

PROJ-CS 601: Research Methodology

Course Outcome (CO)

Student will be able to:

CO1	Explain the meaning, objective, motivation, approaches, components, and significance of research.
CO2	Review the exhaustive literature critically, differentiate between Research Method and Research Methodology, develop the working hypothesis, and formulate the research problem.
CO3	Understand the need for research design, concepts relating to research design and principles of experimental and simulated designs.
CO4	Determine the important sample designs and collect appropriate data through various techniques.
CO5	Analyze the collected data by appropriate techniques and carry out hypothesis testing.
CO6	Prepare the report or thesis in a scholarly manner.

	Research Methodology (PROJ-CS 601)														
		PO'S													
co's	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	РО	PO	РО			
	0	0	0	0	0	0	0	0	0	10	11	12			
	1	2	3	4	5	6	7	8	9						
CO1	2	-	-	-	-	-	2	2	3	2	3	-			
CO2	-	2	-	3	-	-	-	-	-	-	3	3			

Department of Computer Science and Engineering

CO3	2	3	-	-	3	-	2	-	_	-	3	3
CO4	2	3	-	-	-	-	-	-	2	2	3	-
CO5	2	-	-	3	2	-	-	3	3	-	3	-
Aver age	2	2.6 7	-	3	2.5	-	2	2.5	2.6 7	2	3	3

Syllabus (PROJ-CS 601)

Unit	Content	Hrs/Unit	Marks/Unit
1	RESEARCH FORMULATION AND DESIGN	9	
-	Motivation and objectives – Research		
	methods vs. Methodology. Types of		
	research – Descriptive vs. Analytical,		
	Applied vs. Fundamental, Quantitative vs.		
	Qualitative, Conceptual vs. Empirical,		
	concept of applied and basic research		
	process, criteria of good research.		
	Defining and formulating the research		
	problem, selecting the problem, necessity		
	of defining the problem, importance of		
	literature review in defining a problem,		
	literature review-primary and secondary sources, reviews, monograph, patents,		
	research databases, web as a source,		
	searching the web, critical literature		
	review, identifying gap areas from		
	literature and research database,		
	development of working hypothesis.		

DATA COLLECTION AND 9 2 ANALYSIS Accepts of method validation, observation and collection of data, methods of data sampling methods, collection, data processing and analysis strategies and tools.data analysis with statically package (Sigma STAT, SPSS for student tetc.), hypothesis testing. test,ANOVA, **RESEARCH ETHICS,** IPR AND 9 SCHOLARY PUBLISHING 3 Ethics-ethical issues, ethical committees (human & animal): IPR- intellectual property rights and patent law. commercialization, copy right, royalty, of intellectual trade related aspects property rights (TRIPS); scholarly publishing- IMRAD concept and design of research paper, citation and acknowledgement, plagiarism, reproducibility and accountability. INTERPRETATION AND REPORT 9 WRITING 4 Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Project Report, Layout of the Project/Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Project/Research Report, Precautions for Writing Research Reports, Conclusions.

Department of Computer Science and Engineering

Books

- Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. Research Methods: A Process of Inquiry, Allyn and Bacon.
- 2. Carlos, C.M., 2000. Intellectual propertyrights, the WTO and developing countries: the TRIPS agreement and policy options. Zed Books, New York.

PCC-CS691: Database Management System Lab

Course Outcome (CO)

Student will be able to:

CO1	Students write and outline the creation and modification of structures of multi-table relational databases using DDL commands.
CO2	Students use to manipulate (insert, delete and update) data using DML commands.
CO3	Students analyze SQL queries to retrieve selected data from multiple tables according to the need of the user of the database (nested queries, aggregate functions etc.).
CO4	Students evaluate different queries by cost and generate different reports using SQL.
CO5	Students construct database application programs considering the issues like concurrency control of transactions, recovery and security.

	Database Management System Lab (PCC-CS691)															
со		PO'S														
'S	РО	PO	PO	PO	РО	РО	PO	РО	PO	РО	РО	РО				
	1	2	3	4	5	6	7	8	9	10	11	12				
CO 1	2	2	3	1	2	-	-	-	2	-	3	-				
CO 2	2	-	3	1	2	-	-	-	-	-	3	-				
CO 3	2	-	-	1	2	-	-	-	2	-	3	2				
CO 4	2	-	3	1	3	-	-	-	2	-	3	3				
CO 5	2	1	-	1	3	-	-	-	2	-	3	3				
Av g	2	1.5	3	1	2.4	-	-	-	2	-	3	2.67				

Syllabus (PCC-CS691)

Structured Query Language

1 Creating a Database

- Creating a Database
- Creating a Table
- Specifying Relational Data Types
- Specifying Constraints
- Creating Indexes

2. Table and Record Handling

- INSERT statement
- Using SELECT and INSERT together
- DELETE, UPDATE, TRUNCATE statements
- DROP, ALTER statements

3. Retrieving Data from a Database

a. The SELECT statement

- b. Using the WHERE clause
- c. Using Logical Operators in the WHERE clause
- d. Using IN, BETWEEN, LIKE , ORDER BY, GROUP BY and HAVING clause
- e. Using aggregate function
- f. Combining Tables Using JOINS
- g. Subqueries

4. Database Management

- Creating Views
- Creating Column Aliases
- Creating Database Users
- Using GRANT and REVOKE

PCC-CS692: Computer Networks Lab

Course Outcome (CO)

Student will be able to:

CO1	Understand fundamental underlying principles of computer networking.
CO2	Understand details and functionality of layered network architecture.
CO3	Apply mathematical foundations to solve computational problems in computer networking.
CO4	Analyze performance of various communication protocols.

Department of Computer Science and Engineering

CO-PO Mapping

	Computer Networks Lab (PCC-CS692)															
		PO'S														
co's	P O 1	P O 2	Р О З	Р О 4	P O 5	Р О 6	Р О 7	P O 8	P O 9	PO 10	PO 11	PO 12				
CO1	2	3	2	3	3	-	2	1	3	3	-	3				
CO2	2	1	2	1	1	-	2	3	2	-	-	1				
CO3	2	-	2	-	3	-	2	3	2	1	-	3				
CO4	3	3	2	3	-	-	3	-	2	3	-	-				
Aver age	2.2 5	2.3 3	2	2.3 3	2.3 8	-	2.2 5	2.3 3	2.2 5	2.3 3	-	2.3 3				

Syllabus (PCC-CS692)

- 1) NIC Installation & Configuration (Windows/Linux)
- 2) Understanding IP address, subnet etc. Familiarization with
 - Networking cables (CAT5, UTP)
 - Connectors (RJ45, T-connector)
 - Hubs, Switches
 - 3) TCP/UDP Socket Programming
 - Simple, TCP based, UDP based
 - Multicast & Broadcast Sockets
 - Implementation of a Prototype Multithreaded Server

4) Implementation of Data Link Layer Flow Control Mechanism (Stop & Wait, Sliding Window) Data Link Layer Error Detection Mechanism (Cyclic Redundancy Check) Data Link Layer Error Control Mechanism (Selective Repeat, Go Back N)

5) Server Setup/Configuration FTP, TelNet, NFS, DNS, Firewall

4th Yr/7th Semester

PEC-CS701A: Quantum Computing

Course Outcome (CO)

Student will be able to:

CO1	Identify Matrices, Quantum state, Density operator and
	Quantum states.
CO2	Interpret matrices & operators used for quantum computing.
CO3	Apply commutator algebra and tensor products in
	determination of quantum states.
CO4	Analyze the recent developments in quantum measurement
	theory and applications.

	PEC-CS701A: Quantum Computing											
PO'S												
CO'S	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1	-	-	3	2	2	1	3	1	3
CO2	3	3	1	-	-	2	2	2	1	3	-	3
CO3	3	3	2	2	1	2	2	2	1	2	1	3
CO4	3	3	3	1	1	3	3	3	2	2	1	3
A.v.a		2.7	1.7				2.2	2.2	1.2			
Avg	3	5	5	1.5	1	2.5	5	5	5	2.5	1	3

Syllabus (PEC-CS701A)

Unit	Content	Hrs/Unit	Marks/
			Unit
1	Qubit & Quantum States: The Qubit, Vector	3	
	Spaces. Linear Combination Of Vectors,		
	Uniqueness of a spanning set, basis &		
	dimensions, inner Products, orthonormality,		
	gram-schmidt orthogonalization, bra-ket		
	formalism, the Cauchyschwarez and triangle		
	Inequalities.		
2	Matrices & Operators: Observables, The Pauli	10	
	Operators, Outer Products, The Closure		
	Relation, Representation of operators using		
	matrices, outer products & matrix		
	representation, matrix representation of		
	operators in two dimensional spaces, Pauli		
	Matrix, Hermitian unitary and normal operator,		
	Eigen values & Eigen Vectors, Spectral		
	Decomposition, Trace of an operator, important		
	properties of Trace, Expectation Value of		
	Operator, Projection Operator, Positive		
	Operators		

3	Commutator Algebra, Heisenberg uncertainty principle, polar decomposition & singular values, Postulates of Quantum Mechanics.	5	
4	Tensor Products: Representing Composite States in Quantum Mechanics, Computing inner products, Tensor products of column vectors, operators and tensor products of Matrices. Density Operator: Density Operator of Pure & Mix state, Key Properties, Characterizing Mixed State, Practical Trace & Reduce Density Operator, Density Operator & Bloch Vector.	5	
5	Quantum Measurement Theory: Distinguishing Quantum states & Measures, Projective Measurements, Measurement on Composite systems, Generalized Measurements, Positive Operator- Valued Measures.	8	
6	Recent trends in Quantum Computing Research, Quantum Computing Applications of Genetic Programming.	6	

Books

Text book and Reference books:

- 1. Quantum Computing without Magic by Zdzisław Meglicki
- 2. Quantum Computing Explained By DAVID Mc MAHON
- 3. Quantum Computer Science By Marco Lanzagorta, Jeffrey Uhlmann
- 4. An Introduction to Quantum Computing Phillip Kaye, Raymond

Laflamme, Michele Mosca.

PEC-CS701B: Cloud Computing

Course Outcome (CO)

Student will be able to:

C01	Identify the appropriate deployment models, service models and basic cloud architecture
CO2	Explain the concept of abstraction and different aspects of virtualization technology
CO3	Understand the importance of protocols and standards in management for cloud and Identify security implications in cloud computing
CO4	Analyze different services and applications in Cloud Computing

CO's	PO 1	PO 2	PO 3	РО 4	PO 5	РО 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12
CO1	3	2	2	1	2	-	-	-	2	-	3	2
CO2	1	2	-	-	3	-	-	-	2	2	-	2
CO3	2	1	2	1	3	-	-	-	2	2	1	2
CO4	2	1	2	1	2	-	-	-	2	-	2	2
Avg	2	1.5	2	1	2.5	-	-	-	2	2	2	2

Department of Computer Science and Engineering

JIS GROUP

Syllabus (PEC-CS701B)

Uni		Hrs/	Marks
		Unit	/Unit
1	Definition of Cloud Computing and its	9	
	Basics (Lectures).		
	Defining a Cloud, Cloud Types - NIST model, Cloud		
	Cube model, Deployment models (Public, Private,		
	Hybrid and Community Clouds), Service Platform as a		
	Service, Software as a Service with examples of services/		
	service providers, models - Infrastructure as a Service,		
	Cloud Reference model, Characteristics of Cloud		
	Computing – a shift in paradigm Benefits and advantages		
	of Cloud Computing, A brief introduction on		
	Compensability, Infrastructure, Platforms, Virtual		
	Appliances, Communication Protocols, Applications,		
	Connecting to the Cloud by Clients, IaaS – Basic concept,		
	Workload, partitioning of virtual private server instances,		
	Pods, aggregations, silos PaaS – Basic concept, tools and		
	development environment with examples SaaS - Basic		
	concept and characteristics, Open SaaS and SOA,		
	examples of SaaS platform Identity as a Service (IDaaS)		
	Compliance as a Service (CaaS).		
2		12	
	Concepts of Abstraction and Virtualization Virtualization		
	technologies : Types of virtualization (access,		
	application, CPU, storage), Mobility patterns (P2V, V2V,		
	V2P, P2P, D2C, C2C, C2D, D2D) Load Balancing and		
	Virtualization: Basic Concepts, Network resources for		
	load balancing, Advanced load balancing (including		
	Application Delivery Controller and Application		
	Delivery Network), Mention of The Google Cloud as an		
	example of use of load balancing Hypervisors: Virtual		
	machine technology and types, VMware vSphere		
	Machine Imaging (including mention of Open		
	Virtualization Format – OVF) Porting of applications in		
	the Cloud: The simple Cloud API and AppZero Virtual		
	Application appliance, Concepts of Platform as a Service,		

Department of Computer Science and Engineering

	services, Distinction between SaaS and		
	lge of Salesforce.com and Force.com),		
	evelopment Use of PaaS Application		
	scussion of Google Applications Portfolio		
	earch, Dark Web, Aggregation and		
	on, Productivity applications and service,		
Adwords, Goog	gle Analytics, Google Translate, a brief		
discussion on C	Google Toolkit (including introduction of		
Google APIs in	n brief), major features of Google App		
Engine service	e., Discussion of Google Applications		
Portfolio – Inde	exed search, Dark Web, Aggregation and		
disintermediation	on, Productivity applications and service,		
Adwords, Goog	gle Analytics, Google Translate, a brief		
discussion on C	Google Toolkit (including introduction of		
Google APIs in	n brief), major features of Google App		
Engine service,	, Windows Azure platform: Microsoft's		
approach, archi	tecture, and main elements, overview of		
Windows Azur	e AppFabric, Content Delivery Network,		
SQL Azure, and	d Windows Live services		
3 Cloud Infrastr	ucture:	7	
Cloud Manager	ment: An overview of the features of	7	
Cloud Manager		7	
Cloud Manager	ment: An overview of the features of	7	
Cloud Manager network manag related products	nent:An overview of the features of ement systems and a brief introduction of	7	
Cloud Manager network manager related products of an entire clou overview with r	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ad computing deployment stack – an nention of some products, Lifecycle	7	
Cloud Manager network manager related products of an entire clou overview with r	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ud computing deployment stack – an	7	
Cloud Manager network manag related products of an entire clou overview with r management of	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ad computing deployment stack – an nention of some products, Lifecycle	7	
Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Conco	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ud computing deployment stack – an mention of some products, Lifecycle cloud services (six stages of	7	
Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Concer concerns, Secur Overview of sec	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ad computing deployment stack – an mention of some products, Lifecycle cloud services (six stages of epts of Cloud Security: Cloud security rity boundary, Security service boundary curity mapping Security of data:	7	
Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Concer concerns, Secur Overview of sec	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ad computing deployment stack – an nention of some products, Lifecycle cloud services (six stages of epts of Cloud Security: Cloud security rity boundary, Security service boundary	7	
Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Conce concerns, Secur Overview of sec Brokered cloud	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ad computing deployment stack – an mention of some products, Lifecycle cloud services (six stages of epts of Cloud Security: Cloud security rity boundary, Security service boundary curity mapping Security of data:	7	
Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Concer concerns, Secur Overview of sec Brokered cloud tenancy, encryp Identity manage	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ud computing deployment stack – an mention of some products, Lifecycle cloud services (six stages of epts of Cloud Security: Cloud security rity boundary, Security service boundary curity mapping Security of data: storage access, Storage location and	7	
Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Conce concerns, Secur Overview of sec Brokered cloud tenancy, encryp Identity manage standards)	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ad computing deployment stack – an nention of some products, Lifecycle cloud services (six stages of epts of Cloud Security: Cloud security rity boundary, Security service boundary curity mapping Security of data: storage access, Storage location and otion, and auditing and compliance ement (awareness of Identity protocol		
Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Conce concerns, Secur Overview of sec Brokered cloud tenancy, encryp Identity manage standards)	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ud computing deployment stack – an mention of some products, Lifecycle cloud services (six stages of epts of Cloud Security: Cloud security tity boundary, Security service boundary curity mapping Security of data: storage access, Storage location and otion, and auditing and compliance ement (awareness of Identity protocol Services and Applications : Service		
Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Conce concerns, Secur Overview of sec Brokered cloud tenancy, encryp Identity manage standards) 4 Concepts of Oriented Archit	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ud computing deployment stack – an mention of some products, Lifecycle cloud services (six stages of epts of Cloud Security: Cloud security tity boundary, Security service boundary curity mapping Security of data: storage access, Storage location and otion, and auditing and compliance ement (awareness of Identity protocol Services and Applications : Service tecture: Basic concepts of message-based		
 Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Concer concerns, Secur Overview of sec Brokered cloud tenancy, encryp Identity manager standards) Concepts of Oriented Architt transactions, Press 	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ad computing deployment stack – an nention of some products, Lifecycle cloud services (six stages of epts of Cloud Security: Cloud security rity boundary, Security service boundary curity mapping Security of data: storage access, Storage location and otion, and auditing and compliance ement (awareness of Identity protocol Services and Applications : Service tecture: Basic concepts of message-based rotocol stack for an SOA architecture,		
 Cloud Manager network manager related products of an entire clou overview with r management of lifecycle).Conce concerns, Secur Overview of sec Brokered cloud tenancy, encryp Identity manage standards) Concepts of Oriented Architt transactions, Pr Event-driven S 	nent:An overview of the features of ement systems and a brief introduction of s from large cloud vendors, Monitoring ud computing deployment stack – an mention of some products, Lifecycle cloud services (six stages of epts of Cloud Security: Cloud security tity boundary, Security service boundary curity mapping Security of data: storage access, Storage location and otion, and auditing and compliance ement (awareness of Identity protocol Services and Applications : Service tecture: Basic concepts of message-based		

Department of Computer Science and Engineering

functionality mapping, transactions. Application attributes, Cloud service attributes, System abstraction and Cloud Bursting, Applications and Cloud APIs Cloudbased Storage: Cloud storage definition – Manned and Unmanned Webmail Services: Cloud mail services including Google Gmail, Mail2Web, Windows Live Hotmail, Yahoo mail, concepts of Syndication services, Application attributes, Cloud service attributes, System abstraction and Cloud Bursting, Applications and Cloud APIs Cloud-based Storage: Cloud storage definition – Manned and Unmanned Webmail Services: Cloud mail services including Google Gmail, Mail2Web, Windows Live Hotmail, Yahoo mail, concepts of Syndication services

Books

Text book and Reference books:

1. Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013

2. Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola, S.

Thamarai Selvi, McGraw Hill Education (India) Private Limited, 2013

3. Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill

4. Cloud Computing, Miller, Pearson

5. Building applications in cloud:Concept, Patterns and Projects, Moyer, Pearson

6. Cloud Computing – Second Edition by Dr. Kumar Saurabh, Wiley India

PEC-CS701D: Multi-agent Intelligent

Course Outcome (CO)

Student will be able to:

CO1	Define agent, Intelligent agent and Multi-Agent Systems
CO2	Explain the design of different intelligent agents.
CO3	Illustrate agents in expert system and distributed system

	PEC-CS701D: Multi-agent Intelligent													
		PO'S												
CO' S	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	P O 10	РО 11	PO 12		
CO1	2	3	3	2	-	-	-	2	1	2	1	3		
CO2	3	3	2	3	1	-	-	2	1	2	-	3		
CO3	3	3	3	2	1	-	-	2	1	2	1	3		
Avg	2.6 6	3	2.6 6	2.3 3	1	-	-	2	1	2	1	3		

Department of Computer Science and Engineering

JIS GROUP

Syllabus (PEC-CS701D)

Unit	Content	Hrs/	Marks
			/Unit
	Introduction: what is an agent?:agents and objects; agents and expert systems; agents and distributed systems; typical application areas for agent systems.	3	
	Intelligent Agents: the design of intelligent agents reasoning agents (eg AgentO), agents as reactive systems (eg subsumption architecture); hybrid agents (eg PRS); layered agents (eg Interrap) a contemporary (Java-based) framework for programming agents (eg the Jack language, the JAM! system).	9	
	Multi-Agent Systems: Classifying multi-agent interactions - cooperative versus non-cooperative; zero- sum and other interactions; what is cooperation? how cooperation occurs - the Prisoner's dilemma and Axelrod's experiments; Interactions between self interested agents: auctions & voting systems: negotiation; Interactions between benevolent agents: cooperative distributed problem solving (CDPS), partial global planning; coherence and coordination; Interaction languages and protocols: speech acts, KQML/KIF, the FIPA framework.	12	
	Advanced topics: One issue selected from the contemporary research literature, perhaps by guest lecturer.	9	

Books

Text book and Reference books:

1. An Introduction to Multi Agent Systems - Second Edition. Michael Wooldridge (Wiley, 2009)

2. Programming Multi-agent Systems in Agent Speak Using Jason. Rafael

H. Bordini, Jomi Fred Hubner and Michael Wooldridge (Wiley, 2007)

PEC-CS701D: Machine Learning

Course Outcome (CO)

Student will be able to:

CO1	To learn the concept of how to learn patterns and concepts from data without being explicitly programmed
CO2	To design and analyse various machine learning algorithms and techniques with a modern outlook focusing on recent advances.
CO3	Explore supervised and unsupervised learning paradigms of machine learning.
CO4	To explore Deep learning technique and various feature extraction strategies.

	PEC-CS701D: Machine Learning													
		PO'S												
CO'S	PO	РО	РО	РО	РО	PO	PO	РО	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	2	2	-	-	3	2	2	2	2	1	3		
CO2	3	3	3	-	1	3	-	2	2	2	2	3		
CO3	3	3	2	2	1	3	2	3	2	2	2	3		
CO4	3	3	3	1	1	3	2	3	2	2	3	3		
Avg	3	2.75	2.5	1.5	1	3	2	2.5	2	2	2	3		

JIS GROUP

Syllabus (PEC-CS701D)

Unit		Hrs/	Marks/
1		Unit	Unit
1	Supervised Learning (Regression/Classification)	10	
	• Basic methods: Distance-based methods, Nearest-		
	Neighbours, Decision Trees, Naive Bayes		
	• Linear models: Linear Regression, Logistic		
	Regression, Generalized Linear Models		
	• Support Vector Machines, Nonlinearity and Kernel Methods		
	 Beyond Binary Classification: Multi- 		
	class/Structured Outputs, Ranking		
2	Unsupervised Learning	7	
	 Clustering: K-means/Kernel K-means 		
	• Dimensionality Reduction: PCA and kernel PCA		
	• Matrix Factorization and Matrix Completion		
	• Generative Models (mixture models and latent		
	factor models)		
3	Evaluating Machine Learning algorithms and Model	6	
	Selection, Introduction to Statistical Learning Theory,		
	Ensemble Methods (Boosting, Bagging, Random		
	Forests)		
4	Sparse Modeling and Estimation, Modeling	9	
	Sequence/Time-Series Data, Deep Learning and		
	Feature Representation Learning		
5	Scalable Machine Learning (Online and Distributed	9	
	Learning)		
	A selection from some other advanced topics, e.g.,		
	Semi-supervised Learning,		
	Active Learning, Reinforcement Learning, Inference		
	in Graphical Models, Introduction to Bayesian		
6	Learning and Inference Recent trends in various learning techniques of	5	
0	machine learning and classification methods	5	
	machine rearning and crassification methods		

Department of Computer Science and Engineering

Books

Text book and Reference books:

1. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012

2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009

3. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007

4. Dr. Rajiv Chopra, Machine Learning, Khanna Publishing House, 2018

PEC-CS702A: Neural Networks and Deep Learning

Course Outcome (CO)

Student will be able to:

CO1	Understand the fundamentals of artificial neural networks and
	deep learning.
CO2	Explain the architecture of artificial neural networks and deep
	learning.
CO3	Analyse different neural networks and deep learning algorithms
CO4	Apply different neural networks and deep learning algorithms in
	various problem domain.

	PEC-CS702A: Neural Networks and Deep Learning													
	PO'S													
CO'S	РО	РО	PO	РО	РО	РО								
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	2	3	3	1	3	1	1	2	2	1	3		
CO2	3	3	3	3	1	3	1	1	2	2	2	3		
CO3	3	3	3	3	1	3	1	1	2	2	2	3		
CO4	3	3	3	3	1	3	1	1	2	2	3	3		
A.v.a		2.7	3											
Avg	3	5	3	3	1	3	1	1	2	2	2	3		

Department of Computer Science and Engineering

Syllabus (PEC-CS702A)

Unit	Content	Hrs/	Marks
		Unit	/Unit
1	Introduction: Various paradigms of earning	3	
	problems, Perspectives and Issues in deep learning		
	framework, review of fundamental learning		
	techniques.		
2	Feed forward neural network: Artificial Neural	6	
	Network, activation function, multi-layer neural		
	network. cardinality, operations, and properties of		
	fuzzy relations.		
3	Training Neural Network: Risk minimization, loss	6	
	function, backpropagation, regularization, model		
	selection, and optimization.		
4	Conditional Random Fields: Linear chain,	9	
	partition function, Markov network, Belief		
	propagation, Training CRFs, Hidden Markov Model,		
	Entropy.		
5	Deep Learning: Deep Feed Forward network,	6	
	regularizations, training deep models, dropouts,		
	Convolutional Neural Network, Recurrent Neural		
	Network, Deep Belief Network.		
6	Deep Learning research: Object recognition,	6	
	sparse coding, computer vision, natural language		

Books

Text book and Reference books:

1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.

2. Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2006.

3. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.

4. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.

5. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

6. Dr. Rajiv Chopra, Deep Learning, Khanna Publishing House, New Delhi (AICTE Recommended Textbook – 2018)

JIS GROUP

PEC- CS702B: Soft Computing

Course Outcome (CO)

Student will be able to:

CO1	Understand the basic concept of soft computing and hard computing and apply them in designing solution to engineering problem.
CO2	Understand appropriate learning rules for each of the architectures and learn several neural network paradigms and its applications to solving engineering and other problems.
CO3	Apply fuzzy logic and reasoning to handle uncertainty and solving interdisciplinary engineering problems
CO4	Use genetic algorithms to combinatorial optimization problems and recognize the feasibility of applying a soft computing methodology for a particular problem.
CO5	To understand the concept and techniques of designing and implementing of soft computing methods in real world problem.

PEC- C	PEC- CS702B: Soft Computing												
	PO'S	PO'S											
CO'S	РО	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	3	3	3	-	-	-	-	-	-	-	2	
CO2	3	3	3	3	3	3	-	-	-	-	-	2	
CO3	3	3	3	3	3	3	-	-	-	-	-	2	
CO4	3	3	3	3	3	-	-	-	1	1	-	2	
CO5	3	3	3	3	-	3	-	-	2	2	-	2	
Avg	3	3	3	3	3	3	-	-	1.5	1.5	-	2	

Department of Computer Science and Engineering

JIS GROUP

Syllabus (PEC- CS702B)

Unit			Marks/
1	Introduction: Introduction to soft computing, introduction to fuzzy sets and fuzzy logic systems; introduction to biological and artificial neural network; introduction to Genetic Algorithm	Unit 8	Unit
2	 Fuzzy sets and Fuzzy logic systems: Classical Sets and Fuzzy Sets and Fuzzy relations: Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions: Features of membership functions, standard forms and boundaries, different fuzzification methods. Fuzzy to Crisp conversions: Lambda Cuts for fuzzy sets, fuzzy Relations, Defuzzification methods. Classical Logic and Fuzzy Logic: Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy. Implication Fuzzy Rule based Systems: Linguistic Hedges, Fuzzy Rule based system – Aggregation of fuzzy Models –Sugeno Fuzzy Models. Applications of Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting 		

-		-	
3	Neural Network	10	
	Introduction to Neural Networks: Advent of Modern		
	Neuroscience, Classical AI and Neural Networks,		
	Biological Neurons and Artificial neural network;		
	model of artificial neuron.		
	Learning Methods: Hebbian, competitive, Boltzman		
	etc., Neural Network models: Perceptron, Adaline		
	and Madaline networks; single layer network;		
	Backpropagation and multi layer networks.		
	Competitive learning networks: Kohonen self		
	organizing networks, Hebbian learning; Hopfield		
	Networks. Neuo-Fuzzy modelling: Applications of		
	Neural Networks: Pattern Recognition and		
	Classification		
4	Genetic Algorithms: Simple GA, crossover and	10	
	mutation, Multi-objective Genetic Algorithm		
	(MOGA). Applications of Genetic Algorithm:		
	genetic algorithms in search and optimization, GA		
	based clustering Algorithm, Image processing and		
	pattern Recognition		
5	PSO: Other Soft Computing techniques:	4	
	Simulated Annealing, Tabu search, Ant		
	colony optimization (ACO), Particle		
	Swarm Optimization (PSO).		

Books

1.Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley and Sons.

2. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy logic and genetic Algorithms ",PHI

3. Principles of Soft Computing", S.N. Sivanandam, S. Sumathi, John Wiley and Sons

4. Genetic Algorithms in Search, Optimization and Machine Learning", David E. Goldberg, Addison Wesley, 1997.

5. Neural Networks, Fuzzy logic, and Genetic Algorithms", S. Rajasekaran & G. A. V. Pai , PHI

6.Neural Network, S. Haykin, Pearson Education, 2ed, 2001.

PEC-CS702E: Cyber Security

Course Outcome (CO)

Student will be able to:

CO1	To develop an understanding of modern network architectures from a design and performance perspective.
CO2	To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).
CO3	To provide an opportunity to do network programming
CO4	To provide a WLAN measurement idea.

	PEC-CS702E: Cyber Security														
		PO'S													
CO'	PO	РО	Ρ	Ρ	РО	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ			
S	PU 1	2	0	0	5	0	0	0	0	0	0	0			
	1	2	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	2	2	-	-	-	-	3	1	-	2	-			
CO2	3	3	2	-	1	-	-	2	1	2	-	-			
CO3	3	-	2	-	2	-	3	-	1	3	-	2			
CO4	2	3	2	-	2	-	2	-	1	-	3	3			
Avg	2.7 5	2.6 7	2	-	1.6 7	-	2.5	2.5	1	2.5	2.5	2.5			

Department of Computer Science and Engineering

JIS GROUP

Syllabus (Cyber Security)

Unit	Content	Hrs/	Marks
		Unit	/Unit
	Importance and challenges in Cyber Security,	6	
	Cyberspace, Cyber threats, Cyberwarfare, CIA Triad,		
	Cyber Terrorism, Cyber Security of Critical		
	Infrastructure, Cybersecurity – Organizational		
	Implications.		
	Hackers and Cyber Crimes: Types of Hackers, Hackers	7	
	and Crackers, Cyber-Attacks and Vulnerabilities,		
	Malware threats, Sniffing, Gaining Access, Escalating		
	Privileges, Executing Applications, Hiding Files,		
	Covering Tracks, Worms, Trojans, Viruses, Backdoors.		
3	Ethical Hacking and Social Engineering: Ethical	8	
	Hacking Concepts and Scopes, Threats and Attack		
	Vectors, Information Assurance, Threat Modelling,		
	Enterprise Information Security Architecture,		
	Vulnerability Assessment and Penetration Testing,		
	Types of Social Engineering, Insider Attack, Preventing		
	Insider Threats, Social Engineering Targets and		
	Defence Strategies.		
4	Cyber Forensics and Auditing: Introduction to Cyber	10	
	Forensics, Computer Equipment and associated storage		
	media, Role of forensics Investigator, Forensics		
	Investigation Process, Collecting Network based		
	Evidence, Writing Computer Forensics Reports,		
	Auditing, Plan an audit against a set of audit criteria,		
	Information Security Management System		
	Management. Introduction to ISO27001:2013		
5	Cyber Ethics and Laws: Introduction to Cyber Laws,	5	
	E-Commerce and E-Governance, Certifying		
	Authority and Controller, Offences under IT Act,		
	Computer Offences and its penalty under IT Act		
	2000, Intellectual Property Rights in Cyberspace. at		
	Network Layer-IPSec.		

Department of Computer Science and Engineering

Books

Text book and Reference Book:

- 1. Cyber security, Nina Gobole & Sunit Belapune; Pub: Wiley India.
- 2. Information Security and Cyber Laws, Pankaj Agarwal
- 3. Donaldson, S., Siegel, S., Williams, C.K., Aslam, A., Enterprise

Cybersecurity -How to Build a Successful Cyberdefense Program Against Advanced Threats, A-press

- 4. Nina Godbole, SumitBelapure, Cyber Security, Willey
- 5. Hacking the Hacker, Roger Grimes, Wiley
- 6. Cyber Law by Bare Act, Govt Of india, It Act 2000.

7. Information Security & Cyber Laws, Gupta & Gupta, Khanna Publishing House, (AICTE Recommended Textbook- 2018)

OEC-CS701B: Multimedia Systems

Course Outcome (CO)

Student will be able to:

CO1	Identify the fundamental concept of multimedia and its								
	components such as text, audio, image and video								
CO2	Understand the details of audio and video formats and techniques								
CO3	Explain architecture and synchronization, storage models and								
	access techniques of multimedia								
CO4	Analyze different application areas of multimedia and media								
	editors								

	OEC-CS701B: Multimedia Systems														
		PO'S													
CO'S	РО	РО	PO	РО	РО	РО	РО	PO	PO	PO	PO	РО			
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	1	3	3	-	2	-	2	3	1	-	1	2			
CO2	1	2	3	-	3	-	-	-	1	-	1	-			
CO3	1	3	3	-	3	-	2	2	1	-	1	-			
CO4	2	3	3	-	3	-	2	-	1	-	1	3			
Avg	1.25	2.75	3	-	2.75	-	2	2.5	1	-	1	2.5			

Department of Computer Science and Engineering

JIS GROUP

Syllabus (OEC-CS701B)

Unit	Content	Hrs/	Marks
		Unit	/Unit
1	Introduction: Multimedia today, Impact of Multimedia,	2	
	Multimedia Systems, Components and Its Applications		
2	Text and Audio, Image and Video	14	
	Text: Types of Text, Ways to Present Text, Aspects of		
	Text Design, Character, Character Set, Codes, Unicode,		
	Encryption; Audio: Basic Sound Concepts, Types of		
	Sound, Digitizing Sound, Computer Representation of		
	Sound (Sampling Rate, Sampling Size, Quantization),		
	Audio Formats, Audio tools, MIDI		
	Image: Formats, Image Color Scheme, Image		
	Enhancement; Video: Analogue and Digital Video,		
	Recording Formats and Standards (JPEG, MPEG,		
	H.261) Transmission of Video Signals, Video Capture,		
	and Computer based Animation.		
3	Synchronization, Storage models and Access	8	
	Techniques: Temporal relationships, synchronization		
	accuracy specification factors, quality of service,		
	Magnetic media, optical media, file systems (traditional,		
	multimedia) Multimedia devices – Output devices, CD-		
	ROM, DVD, Scanner, CCD		
4	Image and Video Database, Document Architecture and	17	
	Content Management Image representation,		
	segmentation, similarity-based retrieval, image retrieval		
	by color, shape and texture; indexing- k- d trees, R-trees,		
	quad trees; Case studies- QBIC, Virage. Video Content,		
	querying, video segmentation, indexing,		
	Content Design and Development, General Design		
	Principles		
	Hypertext: Concept, Open Document Architecture		
	(ODA), Multimedia and Hypermedia Coding Expert		
	Group (MHEG), Standard Generalized Markup		
	Language (SGML), Document Type Definition (DTD),		

Hypertext Markup Language (HTML) in Web Publishing. Case study of Applications		
Multimedia Applications Interactive television, Video- on-demand, Video Conferencing, Educational Applications, Industrial Applications, Multimedia archives and digital libraries, media editors	5	

Books

Text book and Reference Book:

1. Ralf Steinmetz and Klara Nahrstedt, Multimedia: Computing, Communications & Applications, Pearson Ed.

- 2. Nalin K. Sharda, Multimedia Information System, PHI.
- 3. Fred Halsall, Multimedia Communications, Pearson Ed.
- 4. Koegel Buford, Multimedia Systems, Pearson Ed.
- 5. Fred Hoffstetter, Multimedia Literacy, McGraw Hill.
- 6. Ralf Steinmetz and Klara Nahrstedt, Multimedia Fundamentals: Vol. 1-Media Coding and Content Processing, PHI.
- 7. J. Jeffcoate, Multimedia in Practice: Technology and Application, PHI.

8. V.K. Jain, Multimedia and Animation, Khanna Publishing House, New Delhi (AICTE Recommended Textbook – 2018)

OEC-CS701C: Project Management and EntrepreneurshipThoughts

Course Outcome (CO)

Student will be able to:

CO1	Describe Entrepreneurship & the steps to establish an								
	enterprise and explain project Identification, formulation								
	& project evaluation.								
CO2	Examine role of entrepreneur in economic development								
	and compare and classify types of entrepreneurs								
CO3	Evaluate the entrepreneurial support in India								
CO4	Describe special institutions for entrepreneurial development and assistance in India								

OEC-	OEC-CS701C: Project Management and Entrepreneurship Thoughts											
		PO'S										
CO'S	РО	PO	РО	PO	РО	РО	РО	PO	РО	PO	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	-	-	3	-	-	2	3	2	3	2
CO2	2	2	-	-	3	-	-	2	3	2	3	2
CO3	2	2	-	1	3	-	-	2	3	2	3	2
CO4	2	2	-	1	3	-	-	2	3	2	3	2
Avg	2	2	-	1	3	-	-	2	3	2	3	2

Department of Computer Science and Engineering

JIS GROUP

Syllabus (OEC-CS701C)

Unit	Content	Hrs/	Marks/
		Unit	Unit
1	Introduction: Meaning and Concept of Entrepreneurship, Innovation and entrepreneurship, Contributions of entrepreneurs to the society, risk- opportunities perspective and mitigation of risks		
2	Entrepreneurship – An Innovation: Challenges of Innovation, Steps of Innovation Management, Idea Management System, Divergent v/s Convergent Thinking, Qualities of a prospective Entrepreneur		
3	Idea Incubation: Factors determining competitive advantage, Market segment, blue ocean strategy, Industry and Competitor Analysis (market structure, market size, growth potential), Demand-supply analysis		
4	4. Entrepreneurial Motivation: Design Thinking - Driven Innovation, TRIZ (Theory of Inventive Problem Solving), Achievement motivation theory of entrepreneurship – Theory of McClelland, Harvesting Strategies		
5	Information: Government incentives for entrepreneurship, Incubation, acceleration. Funding new ventures – bootstrapping, crowd sourcing, angel investors, Government of India's efforts at promoting entrepreneurship and innovation – SISI, KVIC, DGFT, SIDBI, Defense and Railways		
6	Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur.		
7	Applications and Project Reports Preparation	4	
8	PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle - Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase		

9	9. Project Feasibility Studies – Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L]		
10	10. Project Planning – Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L]		
11	Project Scheduling and Costing – Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction Methods. [6L]		
12	Project Monitoring and Control – Role of Project Manager, MIS in Project Monitoring, Project Audit [2L]		
13	Case Studies with Hands-on Training on MS-Project [4L]	4	

Books

Text book and Reference Book:

- 1. Innovation and Entrepreneurship by Drucker, P.F.; Harper and Row
- 2. Business, Entrepreneurship and Management: Rao, V.S.P.; Vikas
- 3. Entrepreneurship: Roy Rajeev; OUP.
- 4. Text Book of Project Management: Gopalkrishnan, P. and Ramamoorthy, V.E.; McMillan
- 5. Project Management for Engineering, Business and Technology: Nicholas, J.M., and Steyn, H.; PHI
- 6. Project Management: The Managerial Process: Gray, C.F., Larson, E.W. and Desai, G.V.; MGH

JIS GROUP

PROJ-CS781: Project II

Course Outcome (CO)

Student will be able to:

CO1	Students able to define and understand the concepts to address specific management needs at the individual, team, division and/or organizational level.
CO2	Students able to formulate and apply strategies allowing organizations to achieve desire goals.
CO3	Students able to develop critical-thinking and analytical decision-making capabilities to analyze complex business problems and to redirect them to desired project-based solutions.
CO4	Students able to evaluate and enhance their leadership effectiveness and team-building skills.
CO5	Students able to create effective teams for the processing of assigned projects effectively and efficiently.

PROJ-CS781: Project II												
		PO'S										
CO'S	PO	PO	РО	PO	PO	PO	PO	PO	PO	РО	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	2	2	3	3	3	2	2	3	2	3
CO2	2	3	3	2	3	2	3	2	3	3	2	3
CO3	2	3	2	2	3	-	3	2	2	2	2	3
CO4	2	3	-	2	3	3	-	2	3	-	2	3
CO5	2	-	-	-	3	2	3	2	-	-	2	-
Avg	2	3	2.33	2	3	2.5	3	2	2.5	2.67	2	3

Department of Computer Science and Engineering

JIS GROUP

Syllabus (PROJ-CS781)

Unit		Hrs/	Marks
		Unit	/Unit
1	The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics & Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:		
2	The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up under EC P1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include: 1.In depth study of the topic assigned in the light of the Report prepared under EC P1; 2.Review and finalization of the Approach to the Problem relating to the assigned topic; 3.Preparing an Action Plan for conducting the investigation, including team work; 4.Detailed Analysis/Modelling/Simulation/ Design/ Problem Solving/Experiment as needed; 5.Final development of product/process, testing, results, conclusions and future directions; 6.Preparing a paper for Conference presentation/Publication in Journals, if possible; 7.Preparing a Dissertation in the standard format for being evaluated by the Department. 8.Final Seminar Presentation before a Departmental Committee.		

Department of Computer Science and Engineering

JIS GROUP

4th Yr/8th Semester

PEC- CS801A: Signal and Networks

Course Outcome (CO)

Student will be able to:

CO1	Analyze different types of signals										
CO2	Understand basics electrical circuits with nodal, mesh analysis and electrical network theorems										
CO3	Apply Laplace Transform for steady state and transient analysis.										
CO4	Determine different network functions.										
CO5	Appreciate the frequency domain techniques										

COs	Р	Р	Р	Р	Р	Ρ	Р	Р	Р	Р	Р	Р
	0	0	0	0	0	0	0	0	0	0	0	0
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	1	-	1	-	-	1	1	-	-	-	1
CO2	2	3	1	-	1	-	-	-	1	1	1	1
CO3	2	3	1	-	-	1	1	-	1	1	1	1
CO4	2	3	1	-	-	1	1	-	1	1	1	1
CO5	2	3	1	-	-	1	1	-	1	1	1	1
AVG	2	2.	1	1	1	1	1	1	1	1	1	1
		6										

Department of Computer Science and Engineering

Syllabus (PEC- CS801A)

Unit	Content	Hrs/U
		nit
1	Attacks on Computers & Computer Security - Introduction, Need for Security, Security approaches, Principles of Security, Types of attack	5
2	Cryptography: Concepts & Techniques- Introduction, Plaintext & Cipher text, Substitution Techniques, Transposition Techniques, Encryption & Decryption, Symmetric & Asymmetric key Cryptography, Key Range & Key Size	7
3	Symmetric Key Algorithm - Introduction, Algorithm types & Modes, Overview of Symmetric Key Cryptography, DES(Data Encryption Standard) algorithm, IDEA(International Data Encryption Algorithm) algorithm, RC5(Rivest Cipher 5) algorithm.	8
4.	Asymmetric Key Algorithm, Digital Signature and RSA - Introduction, Overview of Asymmetric key Cryptography, RSA algorithm, Symmetric & Asymmetric key Cryptography together, Digital Signature, Basic concepts of Message Digest and Hash Function (Algorithms on Message Digest and Hash function not required).	5
5	Internet Security Protocols, User Authentication - Basic Concepts, SSL protocol, Authentication Basics, Password, Authentication Token, Certificate based Authentication, Biometric Authentication.	6
6	Electronic Mail Security - Basics of mail security, Pretty Good Privacy, S/MIME.	4
7	Firewall - Introduction, Types of firewall, Firewall Configurations, DMZ Network	3

- 1. "Cryptography and Network Security", William Stallings, 2nd Edition, Pearson Education Asia
- 2. "Cryptography and Network Security" by V.K. Jain, Khanna Publishing House,
- 3. "Network Security private communication in a public world", C. Kaufman, R. Perlman and M. Speciner, Pearson
- 4. Cryptography & Network Security: Atul Kahate, TMH.
- 5. "Network Security Essentials: Applications and Standards" by William Stallings, Pearson.
- 6. "Designing Network Security", Merike Kaeo, 2nd Edition, Pearson Books
- "Building Internet Firewalls", Elizabeth D. Zwicky, Simon Cooper, D. Brent Chapman, 2nd Edition, Oreilly.
- 8. "Practical Unix & Internet Security", Simson Garfinkel, Gene Spafford, Alan Schwartz, 3rd Edition, Oreilly

PEC- CS801B: Cryptography and Network Security

Course Outcome (CO)

Student will be able to:

CO1	Familiarize with the elements of classical encryption										
	techniques and block ciphers, such as data encryption standard.										
CO2	Understand the asymmetric key encryption such as, public-key										
	cryptography and key distribution such as Diffie-Hellman Key										
	Exchange as well as User Authentication Protocols.										
CO3	Analyze and evaluate the design of hash function and MAC										
	algorithms, and digital signatures										
CO4	Design and develop network security schemes, such as PGP, S/										
	MIME, IPSec, SSL, TLS, HTTPS, SSH, etc.										

	Cryptography and Network Security (PEC CS 801B)															
~~~~		PO'S														
CO'S	PO 1	PO 2	PO 3	PO 4	PO 5	PO6	PO7	PO8	PO 9	PO1 0	PO 11	PO 12				
CO1	3	-	-	-	-	-	1	3	-	2	-	2				
CO2	2	2	-	2	3	-	1	3	-	-	-	2				
CO3	-	3	-	3	2	-	1	3	2	2	-	3				
CO4	2	3	-	2	3	-	2	3	3	3	-	3				
Avera ge	2.3 3	2.6 6	-	2.3 3	2. 66	-	1.2 5	3	2. 5	2.3 3	-	2.5				



Department of Computer Science and Engineering

# Syllabus (PEC- CS801B)

Unit	Content	Hrs/Unit
1	Attacks on Computers & Computer Security - Introduction, Need for Security, Security approaches, Principles of Security, Types of attack	5
2	Cryptography: Concepts & Techniques- Introduction, Plaintext & Cipher text, Substitution Techniques, Transposition Techniques, Encryption & Decryption, Symmetric & Asymmetric key Cryptography, Key Range & Key Size	7
3	Symmetric Key Algorithm - Introduction, Algorithm types & Modes, Overview of Symmetric Key Cryptography, DES(Data Encryption Standard) algorithm, IDEA(International Data Encryption Algorithm) algorithm, RC5(Rivest Cipher 5) algorithm.	8
4.	Asymmetric Key Algorithm, Digital Signature and RSA - Introduction, Overview of Asymmetric key Cryptography, RSA algorithm, Symmetric & Asymmetric key Cryptography together, Digital Signature, Basic concepts of Message Digest and Hash Function (Algorithms on Message Digest and Hash function not required).	5
5	Internet Security Protocols, User Authentication - Basic Concepts, SSL protocol, Authentication Basics, Password, Authentication Token, Certificate based Authentication, Biometric Authentication.	6
6	Electronic Mail Security - Basics of mail security, Pretty Good Privacy, S/MIME.	4
7	Firewall - Introduction, Types of firewall, Firewall Configurations, DMZ Network	3



Department of Computer Science and Engineering

- 1. "Cryptography and Network Security", William Stallings, 2nd Edition, Pearson Education Asia
- 2. "Cryptography and Network Security" by V.K. Jain, Khanna Publishing House,
- 3. "Network Security private communication in a public world", C. Kaufman, R. Perlman and M. Speciner, Pearson
- 4. Cryptography & Network Security: Atul Kahate, TMH.
- 5. "Network Security Essentials: Applications and Standards" by William Stallings, Pearson.
- 6. "Designing Network Security", Merike Kaeo, 2nd Edition, Pearson Books
- "Building Internet Firewalls", Elizabeth D. Zwicky, Simon Cooper, D. Brent Chapman, 2nd Edition, Oreilly.
- 8. "Practical Unix & Internet Security", Simson Garfinkel, Gene Spafford, Alan Schwartz, 3rd Edition, Oreilly



# PEC CS801C: Speech and Natural Language Processing

### **Course Outcome (CO)**

Student will be able to:

<b>CO1</b>	Understand the approaches to syntax and semantics in Natural Language Processing, the various types of language processors,
	the elements of formal language theory, the types of grammar,
	and the computational morphology.
<b>CO2</b>	Realize the basic parsing strategies for context-free
	grammars, the data structures and algorithms for
	parsing, and the approaches to ambiguity resolution,
	generation, and dialogue.
<b>CO3</b>	Explain and apply the fundamental algorithms and techniques
	in Natural Language Processing

	Speech and Natural Language Processing (PEC CS801C)															
		PO'S														
CO' S	PO 1	PO 2	РО 3	Р О 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12				
CO1	3	3	2				1	1				2				
CO2	3	3	3	3	1		2			2	1	2				
CO3	3	2	2	1	1	1	1					1				
Avg	3	2.6	3	2	1	1	1.3	1		2	1	1.6				



JIS GROUP

# Syllabus (PEC CS801C)

Unit	Content	Hrs/ Unit
		Unit
1	<b>Regular Expressions and Automata Recap</b> ) - Introduction to NLP, Regular Expression, Finite State	11
	Automata [2L] <b>Tokenization</b> - Word Tokenization, Normalization, Sentence Segmentation, Named Entity Recognition, Multi Word Extraction, Spell Checking – Bayesian Approach, Minimum Edit Distance [5L] <b>Morphology</b> - Morphology – Inflectional and Derivational Morphology, Finite State Morphological Parsing, The Lexicon and Morpholactics, Morphological Parsing with Finite State Transducers, Orthographic Rules and Finite State Transducers,	
	Porter Stemmer [4L]	
2	Language Modeling Introduction to N-grams, Chain Rule, Smoothing – Add-One Smoothing, Witten-Bell Discounting; Backoff, Deleted Interpolation, N-grams for Spelling and Word Prediction, Evaluation of language models. [4L]	8
	Hidden Markov Models and POS Tagging Markov Chain, Hidden Markov Models, Forward Algorithm, Viterbi Algorithm, Part of Speech Tagging – Rule based and Machine Learning based approaches, Evaluation. [4L]	
3	Text Classification Text Classification, Naïve Bayes'Text Classification, Evaluation, Sentiment Analysis –Opinion Mining and Emotion Analysis, Resources andTechniques. [4L]Context Free Grammar Context Free Grammar andConstituency, Some common CFG phenomena forEnglish,Top-Down and Bottom-upparsing,Probabilistic Context Free Grammar,Dependency Parsing [4L]	



Computational Lexical Semantics Introduction to 4. Lexical Semantics – Homonymy, Polysemy, 9 Synonymy, Thesaurus – WordNet, Computational Semantics Thesaurus Lexical _ based and Distributional Word Similarity [4L] Information Retrieval Boolean Retrieval, Termdocument incidence. The Inverted Index, Query Optimization, Phrase Queries, Ranked Retrieval Term Frequency – Inverse Document Frequency based ranking, Zone Indexing, Query term proximity, Cosine ranking, Combining different features for ranking, Search Engine Evaluation, Relevance Feedback [5L]

- 1. Speech and Language Processing, Jurafsky and Martin, Pearson Education
- 2. Foundation of Statistical Natural Language Processing, Manning and Schutze, MIT Press
- 3. Multilingual Natural Language Processing Applications from Theory to Practice: Bikel, Pearson.



### PEC- CS801D: Web and Internet

# **Course Outcome (CO)**

Student will be able to:

<b>CO1</b>	Web and Internet Technology
CO2	Create web pages using XHTML and Cascading Style Sheets.
CO3	Build dynamic web pages using JavaScript (Client-side programming).
<b>CO4</b>	Create XML documents and Schemas.
CO5	Build interactive web applications using AJAX.

	Web and Internet Technology (PEC CS801D)													
	PO'S													
CO'S	P 0 1	PO 2	PO 3	PO 4	PO 5	P O 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO 12		
CO1	2	3	3		2		1	2	1		1	1		
CO2		3	3		2		2		1			1		
CO3		3	3		2		2		1			1		
CO4	2		3	2		1	2	1		1		1		
CO5	2		2	3	2	1	2		1	2	1	1		
Avera ge	2	3	2.8	2.5	2	1	1.8	1. 5	1	1.5	1	1		



#### Department of Computer Science and Engineering

JIS GROUP

# Syllabus (PEC- CS801D)

Unit	Content	Hrs/
		Unit
	Introduction (1L):	6
1	Overview, Network of Networks, Intranet, Extranet	
	and Internet.	
	World Wide Web (1L):	
	Domain and Sub domain, Address Resolution, DNS, Telnet,	
	FTP, HTTP.	
	Review of TCP/IP (1L):	
	Features, Segment, Three-Way Handshaking, Flow Control,	
	Error Control, Congestion control, IP Datagram, IPv4 and	
	IPv6.	
	IP Subnetting and addressing (1L):	
	Classful and Classless Addressing, Subnetting. NAT, IP	
	masquerading, IP tables.	
	Internet Routing Protocol (1L):	
	Routing -Intra and Inter Domain Routing, Unicast and	
	Multicast Routing, Broadcast.	
	Electronic Mail (1L): POP3, SMTP.	
	HTML (3L):	
2	Introduction, Editors, Elements, Attributes, Heading,	9
	Paragraph. Formatting, Link, Head, Table, List, Block, Layout,	,
	CSS. Form, Iframe, Colors, Colorname, Colorvalue.	
	Image Maps (1L):	
	map, area, attributes of image area. Extensible Markup	
	Language (XML) (4L):	
1	Introduction, Tree, Syntax, Elements, Attributes, Validation,	
	Viewing. XHTML in brief.	
1	CGI Scripts (1L):	
	Introduction, Environment Variable, GET and POST Methods.	



	PERL (3L):	
3	Introduction, Variable, Condition, Loop, Array, Implementing	10
_	data structure, Hash, String, Regular Expression,	
	File handling, I/O handling. JavaScript (4L):	
	Basics, Statements, comments, variable, comparison,	
	condition, switch, loop, break. Object – string, array, Boolean,	
	reg-ex. Function, Errors, Validation.	
	Cookies (1L):	
	Definition of cookies, Create and Store a cookie with example.	
	Java Applets (2L):	
	Container Class, Components, Applet Life Cycle, Update	
	method; Parameter passing applet, Applications.	
	Client-Server programming In Java (2L):	
4.	Java Socket, Java RMI. Threats (1L):	4
	Malicious code-viruses, Trojan horses, worms; eavesdropping,	
	spoofing, modification, denial of service attacks.	
	Network security techniques (2L): Password and	
	Authentication; VPN, IP Security, security in electronic	
	transaction, Secure Socket Layer (SSL), Secure Shell (SSH).	
	Firewall (1L):	
	Introduction, Packet filtering, Stateful, Application layer,	
	Proxy.	
5	Internet Telephony (1L):	5
	Introduction, VoIP. Multimedia Applications (2L):	
	Multimedia over IP: RSVP, RTP, RTCP and RTSP. Streaming	
	media, Codec and Plugins, IPTV.	
	Search Engine and Web Crawler (2L):	
	Definition, Meta data, Web Crawler, Indexing, Page rank,	
	overview of SEO.	

- 1. Web Technology: A Developer's Perspective, N.P. Gopalan and J. Akilandeswari, PHI Learning, Delhi, 2013. (Chapters 1-5,7,8,9).
- 2. Internetworking Technologies, An Engineering Perspective, Rahul Banerjee, PHI Learning, Delhi, 2011.(Chapters 5,6,12)



# **PEC- CS801E: Internet of Things**

# **Course Outcome (CO)**

#### Student will be able to:

<b>CO1</b>	Explain the definition and usage of the term "Internet of
	Things" in different contexts
<b>CO2</b>	Understand the key components that make up an IoT system
<b>CO3</b>	Differentiate between the levels of the IoT stack and be familiar
	with the key technologies and protocols employed at each layer
	of the stac
<b>CO4</b>	Apply the knowledge and skills acquired during the course to
	build and test a complete, working IoT system involving
	prototyping, programming, and data analysis
<b>CO5</b>	Understand where the IoT concept fits within the broader ICT
	industry and possible future trends
<b>CO6</b>	Appreciate the role of big data, cloud computing and data
	analytics in a typical IoT system

	Internet of Things (PEC- CS801E)											
		PO'S										
CO'S	P O 1	Р О 2	Р О З	Р О 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	P O 11	P O 12
CO1	1	2	3	3	3	2	2	1	1			1
CO2		3	3	1			1	1		1		1
CO3		3	3	1			1	1		1		1
CO4	2	3	3	3	2		1		2	2	1	2



#### Department of Computer Science and Engineering

CO5	2	3			2	1	1		2	2	1	2
CO6	2	3			2	1	1		2	2		
Avg	1. 75	2. 83	3	2	2.2 5	1.3 3	1.1 6	1	1.7 5	1.6	1	1. 75

# Syllabus (PEC- CS801E)

LECTURE WITH BREAKUP	NO. OF
	LECTURE S
Unit 1: Environmental Parameters Measurement and	7
Monitoring: Why measurement and monitoring are	
important, effects of adverse parameters for the living	
being for IOT	
<b>Unit 2:</b> Sensors: Working Principles: Different types;	8
Selection of Sensors for Practical Applications	
Introduction of Different Types of Sensors such as	
Capacitive, Resistive, Surface Acoustic Wave for	
Temperature, Pressure, Humidity, Toxic Gas etc	
Unit 3: Important Characteristics of Sensors:	11
Determination of the Characteristics Fractional order	
element: Constant Phase Impedance for sensing	
applications such as humidity, water quality, milk	
quality	
Impedance Spectroscopy: Equivalent circuit of Sensors	
and Modelling of Sensors Importance and Adoption of	
Smart Sensors	
Unit 4: Architecture of Smart Sensors: Important	10
components, their features Fabrication of Sensor and	
Smart Sensor: Electrode fabrication: Screen printing,	
Photolithography, Electroplating Sensing film	
deposition: Physical and chemical Vapor, Anodization,	
Sol-gel	



Unit 5: Interface Electronic Circuit for Smart Sensors	7
and Challenges for Interfacing the Smart Sensor,	
Usefulness of Silicon Technology in Smart Sensor And	
Future scope of research in smart sensor	
Unit 6: Recent trends in smart sensor for day to day	5
life, evolving sensors and their architecture.	

- 1. Yasuura, H., Kyung, C.-M., Liu, Y., Lin, Y.-L., Smart Sensors at the IoT Frontier, Springer International Publishing
- 2. Kyung, C.-M., Yasuura, H., Liu, Y., Lin, Y.-L., Smart Sensors and Systems, Springer International Publishing
- 3. Jeeva Jose, Internet of Things, Khanna Publishing House.
- 4. Internet of Things, Arsheep Bahga and Vijay Madisetti



### **OEC- CS801A: Big Data Analysis**

# **Course Outcome (CO)**

Student will be able to:

CO1	Describe big data and use cases from selected business domains
CO2	Explain NoSQL big data management
CO3	Install, configure, and run Hadoop and HDFS
<b>CO4</b>	Perform map-reduce analytics using Hadoop
CO5	Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics

	OEC- CS801A: Big Data Analysis											
		PO'S										
CO' S	P O 1	Р О 2	Р О З	Р О 4	Р О 5	Р О 6	Р О 7	PO 8	PO 9	PO 10	P O 11	PO 12
CO1	2	2	2	1					1			1
CO2	2	2	2	1					1			1
CO3	2			1								1
CO4	2			1								1



#### Department of Computer Science and Engineering

CO5	2	2	2	1	3		1		1
Avg	2	2	2	1	3		1		1

# Syllabus (OEC- CS801A)

LECTURE WITH BREAKUP	NO. OF
	LECT.
Unit 1: What is big data, why big data, convergence of key	
trends, unstructured data, industry examples of big data, web	
analytics, big data and marketing, fraud and big data, risk and	
big data, credit risk management, big data and algorithmic	8
trading, big data and healthcare, big data in medicine,	
advertising and big data, big data technologies, introduction	
to Hadoop, open source technologies, cloud and big data,	
mobile business intelligence, Crowd sourcing analytics, inter	
and trans firewall analytics.	
Unit 2: Introduction to NoSQL, aggregate data models,	
aggregates, key-value and document data models,	
relationships, graph databases, schemaless databases,	8
materialized views, distribution models, sharding, master-	
slave replication, peer-peer replication, sharding and	
replication, consistency, relaxing consistency, version	
stamps, map-reduce, partitioning and combining, composing	
map-reduce calculations.	
<b>Unit 3:</b> Data format, analyzing data with Hadoop, scaling	
out, Hadoop streaming, Hadoop pipes, design of Hadoop	9
distributed file system (HDFS), HDFS concepts, Java	-
interface, data flow, Hadoop I/O, data integrity, compression,	
serialization, Avro, file-based data structures	



Unit 4: MapReduce workflows, unit tests with MRUnit, test data and local tests, anatomy of MapReduce job run, classic Map-reduce, YARN, failures in classic Map-reduce and YARN, job scheduling, shuffle and sort, task execution, MapReduce types, input formats, output formats	10
Unit 5: Hbase, data model and implementations, Hbase clients, Hbase examples, praxis. Cassandra, Cassandra data model, Cassandra examples, Cassandra clients, Hadoop integration.	7
<b>Unit 6:</b> Pig, Grunt, pig data model, Pig Latin, developing and testing Pig Latin scripts. Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, HiveQL queries.	6

- 1.Michael Minelli, Michelle Chambers, and AmbigaDhiraj, "Big Data, Big Analytics: Emerging
- 2.V.K. Jain, Big Data and Hadoop, Khanna Publishing House, New Delhi (2017).
- 3.V.K. Jain, Data Analysis, Khanna Publishing House, New Delhi (2019).
- 4.Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.
- 5.P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", Addison-Wesley Professional, 2012.
- 6.Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 7.Eric Sammer, "Hadoop Operations", O'Reilley, 2012.
- 8.E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 9.Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 10. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010.
- 11. Alan Gates, "Programming Pig", O'Reilley, 2011.



# **OEC- CS801B: Cyber Law and Ethics**

### **Course Outcome (CO)**

Student will be able to:

CO1	Identify appropriate and ethical behaviors, legal standards, rights, restrictions, and moral duties when accessing technology systems, digital media, and information technology within the context of today's society.
CO2	Apply examples of modern compliance in relation to NIST and other applicable standards, laws, and regulations
CO3	Evaluate the relationship between ethics and law, describe civil disobedience and its relation to ethical hacking, describe criminal penalties related to unethical hacking, and apply the notion of "grey areas" to describe situations where law has not yet caught up to technological innovation.
<b>CO4</b>	Implement cyber security solutions and use of cyber security, information assurance, and cyber/computer forensics software/tools.

	Cyber Law and Ethics (OEC CS801B)												
PO'S													
CO'S	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	3	2	-	3	-	2	3	3	-	1	3	2	
CO2	3	2	-	2	-	3	3	3	-	1	2	3	
CO3	3	2	-	2	-	3	2	3	-	-	2	2	



#### Department of Computer Science and Engineering

CO4	2	3	-	2	1	3	3	-	-	1	2	2
Avera ge	2. 75	2. 25	-	2. 25	1	2. 75	2. 75	3	-	1	2. 25	2. 25

# Syllabus (OEC- CS801B)

Unit	Content	Hrs/Unit
	Introduction of Cybercrime: What is	
1	cybercrime?, Forgery, Hacking, Software Piracy,	8
	Computer Network intrusion[4L].	
	Category of Cybercrime: how criminals plan	
	attacks, passive attack, Active attacks,	
	cyberstalking. [4L]	
	Cybercrime Mobile & Wireless devices:	
2	Security challenges posted by mobile devices,	8
	cryptographic security for mobile devices,	
	Attacks on mobile/cellphones, Theft, Virus,	
	Hacking. Bluetooth; Different viruses on laptop	
	[8L]	
	Tools and Methods used in Cyber crime: Proxy	
3	servers, panword checking, Random checking,	8
	Trojan Horses and Backdoors; DOS & DDOS	
	attacks; SQL injection: buffer over flow. [8L]	
	Phishing & Identity Theft: Phising methods, ID	
4.	Theft; Online identity method. [4L]	8
	Cybercrime & Cybersecurity: Legal aspects,	
	indian laws, IT act, Public key certificate. [4L]	



### **Books**

- 1. Cyber security by Nina Gobole & Sunit Belapune; Pub: Wiley India.
- 2. Information Security & Cyber laws, Gupta & Gupta, Khanna Publishing House

# **OEC-CS801C:** Mobile Computing

### **Course Outcome (CO)**

Student will be able to:

<b>CO1</b>	Define mobile technologies in terms of hardware, software, and communications
CO2	Utilize mobile computing nomenclature to describe and analyze existing mobile computing frameworks and architectures.
CO3	Evaluate the effectiveness of different mobile computing frameworks.
CO4	Describe how mobile technology functions to enable other computing technologies.
<b>CO5</b>	Appreciate the frequency domain techniques

# **CO-PO Mapping**

#### Mobile Computing (OEC CS 801C)



#### Department of Computer Science and Engineering

						PO	D'S													
CO'S	PO 1	PO 2	PO 3	P 04	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12								
CO1	2	2	3	1	2	1	1	1	1	1	3									
CO2	1	2		2																
CO3	3	2	3		3						3									
CO4	2	1	3	1			3		2		3									
CO5	2	2					2		2											
Avg	2	1.7 5	3	1.3 3	2.5	1	2	1	1.5	1	3									

# Syllabus (PEC- CS801A)

Un	Content	Hrs/	Marks/U
it		Unit	nit
	Introduction to Personal Communications	5	
1	Services(PCS): PCS Architecture, Mobility		
	management, Networks signalling. Global		
	System for Mobile Communication (GSM)		
	system overview: GSM Architecture,		
	Mobility management, Network		
	signalling.		
	General Packet Radio Services (GPRS):	5	
2	GPRS Architecture, GPRS Network Nodes.		
	Mobile Data Communication: WLANs		
	(Wireless LANs) IEEE 802.11 standard,		
	Mobile IP.		



	Wireless Application Protocol (WAP): The	7	
3	Mobile Internet standard, WAP Gateway		
	and Protocols, wireless mark up Languages		
	(WML). Wireless Local Loop(WLL):		
	Introduction to WLL Architecture, wireless		
	Local Loop Technologies.		
	Third Generation (3G) Mobile Services:	7	
4.	Introduction to International Mobile		
	Telecommunications 2000 (IMT 2000)		
	vision, Wideband Code Division Multiple		
	Access (W-CDMA), and CDMA 2000,		
	Quality of services in 3G		
5	Global Mobile Satellite Systems; case	7	
	studies of the IRIDIUM and		
	GLOBALSTAR systems. Wireless		
	Enterprise Networks: Introduction to		
	Virtual Networks, Blue tooth technology,		
	Blue tooth Protocols.		
	Server-side programming in Java,	8	
6	Pervasive webapplication architecture,		
	Device independent example		
	application		
	· ·		

- 1. "Pervasive Computing", Burkhardt, Pearson
- 2. "Mobile Communication", J. Schiller, Pearson
- 3. "Wireless and Mobile Networks Architectures", Yi-Bing Lin & Imrich Chlamtac, John Wiley & Sons, 2001
- 4. "Mobile and Personal Communication systems and services", Raj Pandya, Prentice Hall of India, 2001.
- 5. "Guide to Designing and Implementing wireless LANs", Mark Ciampa, Thomson learning, Vikas Publishing House, 2001.
- 6. "Wireless Web Development", Ray Rischpater, Springer Publishing,
- 7. "The Wireless Application Protocol", Sandeep Singhal, Pearson .



#### Department of Computer Science and Engineering

- 8. "Third Generation Mobile Telecommunication systems", by P.Stavronlakis, Springer Publishers,
- 9. Brijesh Gupta "Mobile Computing", Khanna Publishing House, New Delhi

### **OEC-IT801D:** Robotics

# **Course Outcome (CO)**

Student will be able to:

<b>CO1</b>	Explain the fundamentals of robotics, sensors, instrumentation										
	in robotics and its components										
<b>CO2</b>	Illustrate the Kinematics and Dynamics of robotics										
<b>CO3</b>	Elucidate the need and implementation of related										
	Instrumentation & control in robotics										
<b>CO4</b>	Describe the movement of robotic joints with										
	computers/microcontrollers.										

	Robotics (OEC-IT801D)												
	PO'S												
CO'S	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	2	2	3	1	2	1	1	1	1	1	3		
CO2	1	2		2									
CO3	3	2	3		3						3		



#### Department of Computer Science and Engineering

CO4	2	1	3	1			3		2		3	
Avg	2	1.7 5	3	1. 33	2.5	1	2	1	1.5	1	3	

# Syllabus (OEC-IT801D)

Unit	Content	Hrs/
		Unit
1	<b>Introduction:</b> Introduction—brief history, types, classification and usage, Science and Technology of robots, Some useful websites, textbooks and research journals.	1
	Elements of robots-links, joints, actuators, and	
2	sensors Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D- H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.	5
3	Kinematics of serial robots Introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tract rix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination, Inverse kinematics solution for the general 6R serial manipulator.	



	Kinematics of parallel robots Degrees-of-freedom of	~
4.	parallel mechanisms and manipulators, Active and	5
	passive joints, Constraint and loop-closure equations,	
	Direct kinematics problem, Mobility of parallel	
	manipulators, Closed-from and numerical solution,	
	Inverse kinematics of parallel manipulators and	
	mechanisms, Direct kinematics of Gough-Stewart	
	platform.	
5.	Velocity and static analysis of robot manipulators	5
	Linear and angular velocity of links, Velocity	
	propagation, Manipulator Jacobians for serial and	
	parallel manipulators, Velocity ellipse and ellipsoids,	
	Singularity analysis for serial and parallel	
	manipulators, Loss and gain of degree of freedom,	
	Statics of serial and parallel manipulators, Statics and	
	force transformation matrix of a Gough-Stewart	
	platform, Singularity analysis and statics.	
6	Dynamics of serial and parallel manipulators	4
	Mass and inertia of links, Lagrangian formulation for	
	equations of motion for serial and parallel	
	manipulators, Generation of symbolic	
	equations of motion using a computer, Simulation	
	(direct and inverse) of dynamic equations of motion,	
	Examples of a planar 2R and four-bar mechanism,	
	Recursive dynamics, Commercially available multi-	
	body simulation software (ADAMS) and Computer	
	algebra software Maple.	
7	Motion planning and control Joint and Cartesian	6
ľ	space trajectory planning and generation, Classical	v
	control concepts using the example of control of a	
	single link, Independent joint PID control, Control of a	
	multi-link manipulator, Non-linear model based control	
	schemes, Simulation and experimental case studies on	
	serial and parallel manipulators, Control of constrained	
	manipulators, Cartesian control, Force control and	
	hybrid position/force control, Advanced topics in non-	
	linear control of manipulators.	



8	Modeling and control of flexible robots Models of	4
	flexible links and joints, Kinematic modeling of multi-	
	link flexible robots, Dynamics and control of flexible	
	link manipulators, Numerical simulations results,	
	Experiments with a planar two-link flexible	
	manipulator.	
9	Modeling and analysis of wheeled mobile robots	3
	3Introduction and some well known wheeled mobile	
	robots (WMR), two and three-wheeled WMR on flat	
	surfaces, Slip and its modeling, WMR on uneven	
	terrain, Design of slip-free motion on uneven terrain,	
	Kinematics, dynamics and static stability of a three-	
	wheeled WMR's on uneven terrain, Simulations using	
	Matlab and ADAMS.	
10	Selected advanced topics in robotics Introduction to	3
	chaos, Non-linear dynamics and chaos in robot	
	equations, Simulations of planar 2 DOF manipulators,	
	Analytical criterion for unforced motion. Gough-	
	Stewart platform and its singularities, use of near	
	singularity for fine motion for sensing, design of	
	Gough-Stewart platform based sensors. Over-	
	constrained mechanisms and deployable structures,	
	Algorithm to obtain redundant links and joints,	
	Kinematics and statics of deployable structures with	
	pantographs or scissor-like elements (SLE's).	

- 1. RoboticsProcess Automation, Khanna Publishing House
- 2. Saha, S.K., "Introduction to Robotics, 2nd Edition, McGraw-Hill Higher Education, NewDelhi,2014
- 3. Ghosal, A., "Robotics", Oxford, New Delhi, 2006.



# **OEC-CS801E: Soft Skill & Interpersonal**

# **Course Outcome (CO)**

Student will be able to:

<b>CO1</b>	Exhibit effective interpersonal communication in a									
	variety of settings and de-escalatory behaviors in									
	situations of conflict.									
<b>CO2</b>	Demonstrate respect for others' viewpoints and									
	acknowledgment and validation of the feelings, opinions, and									
	contributions of others.									
<b>CO3</b>	Apply active listening skills effectively and perceive the									
	listener's interpersonal needs.									
<b>CO4</b>	Establish and identify when using interpersonal									
	communication and maintain proper eye contact while									
	communicating interpersonally.									
CO5	Actively participate in group discussion / meetings /									
	interviews and prepare & deliver presentations.									
<b>CO6</b>	Become more effective individual through goal/target setting,									
	self-motivation and practicing creative thinking.									

	OEC-CS801E: Soft Skill & Interpersonal												
		PO'S											
CO' S												PO 12	
CO1	2     2     2     1     1     1												



Department of Computer Science and Engineering

CO2	2	2	2	1			1		1
CO3	2			1					1
CO4	2			1					1
CO5	2	2	2	1	3		1		1
CO6	2	2	1	1			1		1
Avg	2	2	2	1	3		1		1

# Syllabus (OEC-CS801E)

Unit	Content	Hrs/
		Unit
	Introduction: ANew Approach To Learning, Planning A	
1	ndGoal-Setting,HumanPerceptions: Understanding	5
	People, Types Of Soft Skills: Self-Management	
	Skills, Aiming For Excellence :Developing Potential	
	And Self-Actualization, Need Achievement And	
	Spiritual Intelligence	
	Conflict Resolution Skills: Seeking Win-Win	
2	Solution, Inter-Personal Conflicts: Two Examples,	5
	Inter-Personal Conflicts: Two Solutions, Types of	
	Conflicts: Becoming A Conflict Resolution Expert	
	Types Of Stress: Self-Awareness About Stress,	
	Regulating Stress: Making The Best Out Of Stress	
	Habits: Guiding Principles, Habits: Identifying Good	
3	And Bad Habits, Habits: Habit Cycle ,Breaking Bad	5
	Habits, Using The Zeigarnik Effect For Productivity	
	And Personal Growth, Forming Habits Of Success	



	Communication: Significance Of Listening,	
4.	Communication: Active Listening,	5
	Communication: Barriers To Active Listening,	
	Telephone Communication: Basic Telephone Skills	
	,TelephoneCommunication:AdvancedTelephoneSki	
	lls, Telephone Communication: Essential Telephone S	
	kills	
	Technology And Communication:	
5.	TechnologicalPersonality,TechnologyAndCommuni	5
	cation:MobilePersonality?,Topic:TechnologyAndCo	
	mmunication:E- Mail Principles, Technology And	
	Communication: How Not To Send E-Mails!,	
	Technology And Communication: Netiquette,	
	Technology And Communication: E-Mail Etiquette	
	CommunicationSkills: Effective	
6	Communication, Barriers To Communication:	5
	Arising Out Of Sender/Receiver's Personality,	
	Barriers To Communication: Interpersonal	
	Transactions, Barriers To Communication:	
	Miscommunication, Non-Verbal	
	Communication: Pre-Thinking Assessment-1, Non-	
	Verbal Communication: Pre-Thinking Assessment-2	
	Nonverbal Communication: Introduction And	
7	Importance , Non-Verbal Communication: Issues	5
	And Types, Non-Verbal Communication: Basics	
	And Universals, Non-Verbal Communication:	
	Interpreting Non-Verbal Cues, Body Language: For	
	Interviews, Body Language : For Group Discussions	
	Presentation Skills: Overcoming Fear.	
8	Presentation Skills: Becoming A Professional,	5
	Presentation Skills: The Role Of Body	
	Language, Presentation Skills: Using Visuals,	
	Reading Skills: Effective Reading, Human	
	Relations: Developing Trust And Integrity	



Department of Computer Science and Engineering

### Books

- 1. Dorch, Patricia. *What Are Soft Skills*? New York: Execu Dress Publisher,2013.
- 2. Kamin, Maxine. Soft Skills Revolution: A Guide for Connecting with Compassion for Trainers, Teams, and Leaders. Washington, DC: Pfeiffer & Company,2013.
- 3. Klaus, Peggy, Jane Rohman & Molly Hamaker. The Hard Truth about Soft Skills .London: Harper Collins E-books, 2007.
- 4. Petes S.J., Francis. Soft Skills and Professional Communication. NewDelhi: TataMcGraw-HillEducation,2011.
- 5. Stein, Steven J.& Howard E.Book. The EQEdge: Emotional Intelligence and Your Success. Canada: Wiley& Sons,2006.

### OEC-CS802A: E-Commerce & ERP

### **Course Outcome (CO)**

Student will be able to:

CO1	Illustrate the impact of E-commerce on business models and
	strategy.
<b>CO2</b>	Understand the major types of E-commerce and how
	procurement and supply chains relate to B2B E-commerce.
CO3	Demonstrate the process that should be followed in building an
	E-commerce presence.
<b>CO4</b>	Summarize the key security threats in the E-commerce environment



**CO-PO** Mapping

	E-Commerce and ERP (OEC-CS802A)													
		PO'S												
CO 'S	P O 1	P O 2	P O 3	Р О 4	P O 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO 1	3	2	-	-	-	2	-	2	2	-	-	2		
CO 2	2	2	-	2	-	2	-	3	2	-	3	3		
CO 3	2	3	-	2	-	1	-	2	2	-	2	3		
CO 4	2	2	-	1	-	3	-	3	-	-	2	2		
Av g	2. 25	2. 25	-	1. 66	-	2	-	2.5	2	-	2.3 3	2.5		

### Syllabus (OEC-CS802A)

- 1. Overview, Definitions, Advantages & Disadvantages of E Commerce, Threats of E – Commerce, Managerial Prospective, Rules & Regulations For Controlling E – Commerce, Cyber Laws. [ 3 L ]
- Technologies : Relationship Between E Commerce & Networking, Different Types of Networking Commerce, Internet, Intranet & Extranet, EDI Systems Wireless Application Protocol : Definition, Hand Held Devices, Mobility & Commerce, Mobile Computing, Wireless Web, Web Security, Infrastructure Requirement For E – Commerce . [5 L]
- Business Models of e commerce : Model Based On Transaction Type, Model Based On Transaction Party - B2B, B2C, C2B, C2C, E – Governance. [2 L]



Department of Computer Science and Engineering

- 4. E strategy : Overview, Strategic Methods for developing E commerce. [2 L ]
- 5. Four C's : ( Convergence, Collaborative Computing, Content Management & Call Center ). Convergence : Technological Advances in Convergence Types, Convergence and its implications, Convergence & Electronic Commerce. Collaborative Computing : Collaborative product development, contract as per CAD, Simultaneous Collaboration, Security. Content Management : Definition of content, Authoring Tools & Content Management, Content partnership, repositories, convergence, providers, Web Traffic & Traffic Management ; Content Marketing. Call Center : Definition, Need, Tasks Handled, Mode of Operation, Equipment , Strength & Weaknesses of Call Center, Customer Premises Equipment (CPE).[6 L]
- 6. Supply Chain Management : E logistics, Supply Chain Portal, Supply Chain Planning Tools(SCP Tools), Supply Chain Execution (SCE), SCE Framework, Internet's effect on Supply Chain Power. [ 3 L ]
- 7. E Payment Mechanism : Payment through card system, E Cheque, E – Cash, E – PaymentThreats & Protections. [1 L]
- 8. E Marketing :. Home –shopping, E-Marketing, Tele-marketing [ 1 L ]
- 9. Electronic Data Interchange (EDI) : Meaning, Benefits, Concepts, Application, EDI Model,Protocols (UN EDI FACT / GTDI, ANSI X 12), Data Encryption (DES / RSA). [2 L]
- 10. Risk of E Commerce : Overview, Security for E Commerce, Security Standards, Firewall, Cryptography, Key Management, Password Systems, Digital certificates, Digitalsignatures. [4 L ]
- 11. Enterprise Resource Planning (ERP) : Features, capabilities and Overview of Commercial Software, re-engineering work processes for IT applications, Business Process Redesign, Knowledge engineering and data warehouse . Business Modules: Finance, Manufacturing (Production), Human Resources, Plant Maintenance, Materials Management, Quality Management, Sales & Distribution ERP Package, ERP Market: ERP Market Place, SAP AG, PeopleSoft, BAAN, JD Edwards, Oracle Corporation ERP-Present and Future: EnterpriseApplication Integration (EAI), ERP and E-Commerce, ERP and Internet, Future Directions in ERP [10]



#### Department of Computer Science and Engineering

- 1. E-Commerce, M.M. Oka, EPH
- 2. Kalakotia, Whinston : Frontiers of Electronic Commerce , Pearson Education.
- 3. Bhaskar Bharat : Electronic Commerce Technologies & Applications.TMH
- 4. Loshin Pete, Murphy P.A. : Electronic Commerce , Jaico Publishing Housing.
- 5. Murthy : E Commerce , Himalaya Publishing.
- 6. E Commerce : Strategy Technologies & Applications, Tata McGraw Hill.
- 7. Global E-Commerce, J. Christopher & T.H.K. Clerk, University Press
- 8. Beginning E-Commerce, Reynolds, SPD
- 9. Krishnamurthy, E-Commerce Mgmt, Vikas



# OEC-CS802B: Micro-electronics and VLSI

# **Course Outcome (CO)**

Student will be able to:

-	
<b>CO1</b>	Able to describe fabrication steps of IC and construct stick
	diagram & layout of Logic Gates
<b>CO2</b>	Build upon the theoretical, mathematical, and physical
	analysis of digital VLSI circuits, for proper understanding
	of concept, working, analysis and design.
<b>CO3</b>	Design, simulate and analyze any electronic device and
	circuit.
<b>CO4</b>	Apply the concepts in testing which can help them design
	a better yield in IC design and tackle the problems
	associated with testing of integrated circuits at earlier
	design levels to significantly reduce the testing costs.
<b>CO5</b>	Develop the ability to analyze and design electrical
	interconnect using equivalent circuit models.

	Micro-electronics and VLSI(OEC-CS802B)													
		PO'S												
CO'S	РО	РО	РО	PO	РО									
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	2	2	3	1	2	1	1	1	1	1	3			
CO2	1	2		2										
CO3	3	2	3		3						3			
CO4	2	1	3	1			3		2		3			



#### Department of Computer Science and Engineering

CO5	2	2					2		2			
Avg	2	1.7 5	3	1. 33	2.5	1	2	1	1.5	1	3	

# Syllabus (OEC-CS802B)

**Introduction to CMOS circuits:** MOS Transistors, MOS transistor switches, CMOS Logic, The inverter, Combinational Logic, NAND gate, NOT Gate, Compound Gates, Multiplexers, Memory-Latches and Registers. [6L]

**Processing Technology**: Silicon Semiconductor Technology- An Overview, wafer processing, oxidation, epitaxy deposition, Ion-implantation and diffusion, The Silicon Gate Process- Basic CMOS Technology, basic n-well CMOS process, p-well CMOS process, Twin tub process, Silicon on insulator, CMOS process enhancement-Interconnect, circuit elements, 3-D CMOS. Layout Design Rule: Layer Representations, CMOS n-well Rules, Design Rule of background scribe line, Layer Assignment, SOI Rule[10L].

**Power Dissipation:** Static dissipation, Dynamic dissipation, short-circuit dissipation, total power dissipation. Programmable Logic, Programmable Logic structure, Programmable interconnect, and Re programmable Gate **Array:** Xilinx Programmable Gate Array, Design Methods: Behavioral Synthesis, RTL synthesis[8L]

**Placement:** placement: Min cut based placement – Iterative improvement placement simulated annealing. Routing: Segmented channel routing-maze routing-rout ability and routing resources- net delays. [5L]

**VerificationandTesting:**VerificationVersusTesting,Verification:logicsimulat iondesignvalidation – timing verification – Testing concepts: failures – mechanisms and faults – fault coverage – ATPG methods – types of tests – FPGAs – programmability failures – design forte stability.[5L] Overview of VHDL[5L]



Department of Computer Science and Engineering

## Books

- 1. ``Digital Integrated Circuit'', J.M. Rabaey, Chandrasan, Nicolic, Pearson
- 2."CMOS Digital Integrated circuit", S.M.Kang & .Leblebici, MH
- 3.3."ModernVLSIDesign" WayneWolf, Pearson
- 4. "Algorithm for VLSI Design & Automation", N.Sherwani, Kluwer5."VHDL", Bhaskar, PHI



# OEC- CS802C: Economic Policies in India

# Course Outcome (CO)

Student will be able to:

CO1	Understand the framework in which the functioning of the economy and economics policies operates.
CO2	Apply the knowledge of economics to solve complex economic problems of the country
CO3	Undertake research on various social and economic issues and come out with solutions to perennial problems in this sphere.
<b>CO4</b>	Develop macroeconomic models, which can serve as the workhorse for a fast-growing economy
CO5	Using various econometric and time series techniques evaluate the policies implemented by the government.

# **CO-PO Mapping**

Economic Policies in India (OEC- CS802C)														
		PO'S												
CO'S	РО	РО	РО	PO	РО									
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	2	2	3	1	2	1	1	1	1	1	3			
CO2	1	2		2										
CO3	3	2	3		3						3			
CO4	2	1	3	1			3		2		3			



### Department of Computer Science and Engineering

CO5	2	2					2		2			
Avg	2	1.7 5	3	1. 33	2.5	1	2	1	1.5	1	3	

# Syllabus (OEC- CS802C)

#### **Economic Development and its Determinants**

Approaches to economic development and its measurement – sustainable development; Role of State, market and other

institutions; Indicators of development – PQLI, Human Development Index (HDI), gender development indices.

#### **Planning in India**

Objectives and strategy of planning; Failures and achievements of Plans; Developing grass-root organizations for

development – Panchayats, NGOs and pressure groups.

Demographic Features, Poverty and Inequality

Broad demographic features of Indian population; rural-urban migration; Urbanization and civic amenities; Poverty and Inequality.

#### **Resource Base and Infrastructure**

Energy; social infrastructure – education and health; Environment; Regional imbalance; Issues and policies in financing infrastructure development.

#### **The Agricultural Sector**

Institutional Structure – land reforms in India; Technological change in agriculture – pricing of agricultural inputs and output;

industry; Agricultural finance policy; Agricultural Marketing and

Warehousing; Issues Terms of trade between agriculture

and in food security – policies for sustainable agriculture.

#### Section – II

Industrial policy; Public Sector enterprises and their performance; Problem of sick units in India;

Privatization and

disinvestment debate; Growth and pattern of industrialization; Small-scale sector; Productivity in industrial sector; Exit



Department of Computer Science and Engineering

policy – issues in labour market reforms; approaches for employment generation.

#### **Public Finances**

Fiscal federalism – Centre-State financial relations; Finances of central government; Finances of state governments; Parallel

economy; Problems relating to fiscal policy; Fiscal sector reforms in India.

#### Money, Banking and Prices

Analysis of price behaviour in India; Financial sector reforms; Interest rate policy; Review of monetary policy of RBI; Money and capital markets; Working of SEBI in India.

#### **External Sector**

Structure and direction of foreign trade; Balance of payments; Issues in export-import policy and FEMA; Exchange rate

policy; Foreign capital and MNCs in India; The progress of trade reforms in India.

#### **Economic Reforms**

Rationale of internal and external reforms; Globalization of Indian economy; WTO and its impact on the different sectors of the economy; Need for and issues in good governance; Issues in competition and safety nets in Indian economy.

# Books

- 1. Ahluwalia, I. J. and I. M. D Little (Eds.) (1999), India's Economic Reforms and Development(Essays in honour of Manmohan Singh), Oxford University Press, NewDelhi.
- 2. Bardhan, P. K. (9th Edition) (1999), The Political Economy of Development in India, Oxford University Press, New Delhi.
- 3. Bawa, R. s. and P. S. Raikhy (Ed.) (1997), Structural Changes in Indian Economy, GuruNanak Dev University Press, Amritsar.
- 4. Brahmananda, P. R. and V. R. Panchmukhi (Eds.) (2001), Development Experience in the Indian Economy: Inter-State Perspectives, Bookwell, Delhi.



#### Department of Computer Science and Engineering

- 5. Chakravarty, S. (1987), Development Planning : The Indian Experience, Oxford University Press, NewDelhi.
- 6. Dantwala, M. L. (1996), Dilemmas of Growth : The Indian Experience, Sage Publications, NewDelhi.
- 7. Datt, R. (Ed.) (2001), Second Generation Economic Reforms in India, Deep & amp; Deep Publications, NewDelhi.
- 8. Government of India, Economic Survey(Annual), Ministry of Finance, NewDelhi.
- 9. Jain, a.K. (1986), Economic Planning in India, Ashish Publishing House, NewDelhi.
- 10. Jalan, B. (1992), The Indian Economy–Problems and Prospects, Viking, New Delhi.



Department of Computer Science and Engineering

# PROJ- CS881: Project-III

# **Course Outcome (CO)**

Student will be able to:

<b>CO1</b>	Students able to <b>define</b> and <b>understand</b> the concepts to
	address specific management needs at the individual, team,
	division and/or organizational level.
<b>CO2</b>	Students able to formulate and apply strategies allowing
	organizations to achieve desire goals.
<b>CO3</b>	Students able to develop critical-thinking and analytical
	decision-making capabilities to analyze complex business
	problems and to redirect them to desired project-based
	solutions.
<b>CO4</b>	Students able to evaluate and enhance their leadership
	effectiveness and team-building skills.
<b>CO5</b>	Students able to <b>create</b> effective teams for the processing of
	assigned projects effectively and efficiently.

# **CO-PO** Mapping

Proj	Project Management (PROJ CS881)												
со	PO'S												
'S	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO 1	3	2	3	_	3	_	_	_	3	2	3	_	
CO 2	2	_	2	3	_	_	_	_	_	2	3	_	



### Department of Computer Science and Engineering

СО		2	2	3		3	2				3	
3	-	2	2	5	—	5	2	—	-	-	5	-
СО	2	2			3	1			3		3	2
4	2	2	-	-	5	T	-	—	5	-	5	2
СО					3			2	3	2	3	2
5	-	-	-	-	5	—	-	2	5	2	5	2
Av	2	2	2.3	3	3	2	2	2	3	2	3	2
g	2	2	3	5	5	2	2	2	5	2	5	2



# **Code of Conducts of the Students**

### **1. PREPARATION**

All students must understand that it is their responsibility to follow this Code of Ethics and Conduct (hence referred to as the 'Code') and the rights, obligations, and limitations that it entails.

That the Institute's goal in implementing this Code is to pioneer and administer an equitable, conscientious, effective, and timely student discipline procedure, as well as to provide a system that encourages student progress through individual and communal accountability.

All students are expected to be well-versed in this Code, which may also be found on the Institute's official website.

### **2. JURISDICTION**

2.1 The Institute shall have jurisdiction over the conduct of students associated/enrolled with the Institute, and shall be aware of all acts of misconduct, including incidents of ragging or otherwise, that occur on the Institute campus or in connection with Institute-related activities and functions.

2.2 The Institute may have jurisdiction over conduct that occurs off-campus that violates the ideal student conduct and discipline as outlined in this Policy and other regulations, as if the conduct occurred on campus, which shall include:

a) Any violations of the Sexual Harassment Policy of the Institute against other students of the Institute.



b) Physical assault, threats of violence, or conduct that threatens the health or safety of any person including other students at the Institute.

c) Possession or use of weapons, explosives, or destructive devices off campus.

d) Manufacturing, selling, or distributing illegal narcotics, alcohol, or other substances.

e) Conduct that has a negative impact on members of the offcampus community or is a nuisance to them.

The Institute shall consider the seriousness of the alleged offence, the risk of harm involved, whether the victim(s) are members of the campus community, and/or whether the offcampus conduct is part of a series of actions that occurred both on and off-campus when deciding whether to exercise such off-campus jurisdiction in the situations enumerated herein.

### **3. BEHAVIOR AND ETHICS**

3.1 This Code applies to all types of student conduct on Institute grounds, including Institute-sponsored activities, functions hosted by other recognized student organizations, and any off-campus conduct that has or may have serious consequences or a negative impact on the Institute's interests or reputation.

3.2 Each student must sign a declaration recognizing this Code and promising to follow it at the time of admission:

a) He/she must be regular and complete his/her studies at the Institute.



Department of Computer Science and Engineering

b) If a student is obliged to abandon studies for any justifiable reason, he/she may be removed from the Institute with the Principal's written agreement.

c) As a result of such relief, the student will be required to pay any outstanding hostel/mess dues, and if the student was admitted on a scholarship, the grant will be cancelled.

3.3. The Institute believes that implementing behavioral norms would help to create a safe and efficient environment. All students must maintain academic integrity, respect all individuals and their rights and property, and ensure the safety of others, among other things.

3.4 All students shall refrain from engaging in all forms of wrongdoing, including engaging in any off-campus activities that could jeopardize the Institute's interests and reputation.

3.5 Discrimination (physical or verbal) based on a person's gender, caste, race, religion, or religious beliefs, color, region, language, disability, or sexual orientation, marriage, or family status, physical or mental disability, gender identity, or other factors.

3.6 Deliberately causing damage to Institute property or the property of other students and/or faculty members.

3.7 Any disruptive behavior in a classroom or at an Institutesponsored event.

3.8 Inability to produce the Institute's identity card or refusal to produce it when asked by campus security officers.

3.9 Participating in activities without the Institute's consent, such as:



Department of Computer Science and Engineering

3.9.1 Organizing gatherings and processions.

3.9.2 Accepting membership in religious or terrorist organizations that the Institute/Government of India has outlawed.

3.9.3 Contrary to law or policy, illegal possession, carrying, or use of any weapon, ammunition, explosives, or potential weapons, fireworks.

3.9.4 Illegal possession or use of hazardous chemicals and controlled substances.

3.9.5 Smoking on the Institute's premises.

3.9.6 Possessing, consuming, distributing, selling, and/or tossing empty bottles on the Institute's campus are all prohibited.

3.9.7 Parking a vehicle in an area designated for parking other types of vehicles or in a no parking zone.

3.9.8 Improper driving on campus that may cause others to be inconvenienced.

3.9.9 Not informing the Chief Medical Officer about a preexisting health problem, whether physical or psychological, that could impede academic development.

3.9.10 Unauthorized access to others' resources or theft.

3.9.11 Misconduct during student body elections or any Institute-sponsored activity.

3.9.12 Behaving in a disorderly, lewd, or indecent manner at the Institute, including, but not limited to, making excessive



Department of Computer Science and Engineering

noise, pushing, and shoving, inciting or participating in a riot, or causing a group disruption.

3.10 Students are not permitted to communicate with media representatives on behalf of the Institute or to invite media persons to the campus without the authorization of the Institute management.

3.11 Without prior authorization, students are not permitted to capture audio or video lectures in classes or the behaviors of other students, instructors, or staff.

3.12 Students are not permitted to supply media with audio or video clips of any campus activity without prior approval.

3.13 Students are required to use social media properly and with caution.They are prohibited from making negative comments about other Institute employees on social media or engaging in any other activity that could harm the Institute's reputation.

3.14 Unauthorized entry, use, tampering, etc. of Institute property or facilities, private residences of staff/professors, offices, classrooms, computers networks, and other restricted facilities, as well as interference with others' work, is punishable.

3.15 Any damage to or destruction of Institute property or the property of others on Institute grounds.

3.16 Without the person's knowledge and explicit agreement, making a video/audio recording, taking pictures, or streaming audio/video of any person in a location where the person has a reasonable expectation of privacy.



Department of Computer Science and Engineering

3.17 Harassment, which is defined as harsh and objective behavior motivated by a person's race, color, national or ethnic origin, citizenship, sex, religion, age, sexual orientation, gender, gender identity, marital status, ancestry, physical or mental disability, or medical condition.

4 If there is a case against a student for a probable breach of code of conduct, then a committee will be constituted to recommend a suitable disciplinary action who shall enquire into the alleged violation and consequently indicate the action to be taken against the said student.

The committee may meet with the student to determine the extent of the misbehavior and recommend one or more of the disciplinary actions listed below, depending on the severity of the misconduct.

4.1 WARNING- Indicating that the delinquent student's actions were in breach of the Code, and that any future acts of misbehaviour will result in serious disciplinary punishment.

4.2 RESTRICTIONS - Reprimanding and restricting access to certain campus facilities for a period.

4.3 COMMUNITY SERVICE - For a set amount of time, which may be extended if necessary. Any future wrongdoing, as well as failure to comply with any imposed limitations, may result in severe disciplinary action, such as suspension or expulsion.

4.4 EXPULSION - Permanent expulsion of a student from the Institute, indicating that attending the Institute or participating in any student-related activities or living on campus is prohibited.



Department of Computer Science and Engineering

4.5 FINANCIAL PENALTY- This could include the suspension or forfeiture of a scholarship or fellowship for a set period.

4.6 SUSPENSION- A student may be suspended for a length of time, preventing them from engaging in student-related activities, classes, or programmes. Furthermore, unless permission is acquired from the Competent Authority, the student will be prohibited from using various Institute facilities. Suspension may be followed by dismissal, as well as the other punishments listed below.

4.7 For a period of three years, you will be ineligible to reapply for admission to the Institute, and

4.8 Withholding the grade card or certificate for the courses studied or work \scarred out.

### 5 APPEALS:

If a delinquent student feels he or she has been wronged by the application of any of the above punishments, he or she may file an appeal with the Principal. The Principal may decide on one of the following:

5.1 Accept the committee's proposal and impose the punishment recommended by the Committee or amend and impose any of the punishments stated in this Code that are appropriate with the degree of the proven wrongdoing. Or

5.2 Recommend the case to the committee for further consideration.

In all circumstances where there is a potential for student misconduct, the Director's decision is final and binding.

### **6 ACADEMIC INTEGRITY**



Department of Computer Science and Engineering

The Institute values academic integrity and is devoted to building an intellectual and ethical environment based on academic integrity principles as a top institution for advanced scientific and technology research and education.

Academic integrity includes honesty, accountability, and awareness of ethical standards for study and scholarship. The Institute believes that the ideas and contributions of others should be appropriately acknowledged in all academic work. Academic integrity is critical to the Institute's and its research missions' success, and so academic integrity infractions are a significant offence.

### 6.1 Purpose and Scope

A. The academic integrity policy, which is an integral aspect of the Code, applies to all students at the Institute, and they are obligated to follow it.

The Policy serves a dual purpose:

- To make the ideals of academic honesty clearer, and
- To give examples of dishonest behavior and academic integrity infractions.

NOTE: These examples are intended to be illuminating rather than exhaustive.

B. Failure to follow these academic integrity principles jeopardizes the Institute's reputation as well as the worth of the degrees issued to its students.

As a result, every member of the Institute community takes responsibility for upholding the highest standards of academic integrity.



C. Academic integrity dictates that a student appropriately acknowledges and references the use of others' ideas, results, materials, or language.

Ensures that all work submitted as his or her own in a course or other academic activity is produced without the use of impermissible materials or impermissible collaboration; properly acknowledges all contributors to a given piece of work; and ensures that all work submitted as his or her own in a course or other academic activity is produced without the use of impermissible materials or impermissible collaboration.

Obtains all data or results ethically and accurately reports them, with no results suppressed that contradict his or her interpretation or conclusions.

Demonstrates ethical behavior toward all other students, respecting their integrity and right to pursue their educational goals without hindrance. This means that a student must not assist others in academic dishonesty or hamper their own academic advancement.

# 6.2 Examples of policy violations include, but are not limited to:

### (i)Plagiarism Violation:

Plagiarism is defined as the use of someone else's content, ideas, figures, code, or data without properly recognizing the original source. This could include submitting material written by another person or previously published by oneself, directly or paraphrased.

Plagiarism can be defined as:



Department of Computer Science and Engineering

(a) reproducing text/sentences from a report, book, thesis, publication, or the internet in whole or in part.

(b) Reproducing previously published data, illustrations, figures, or images, whether one's own or someone else's.

(c) Incorporating non-textual material from other sources into one's class reports, presentations, manuscripts, research papers, or thesis without proper attribution, such as graphs, drawings, photographs, diagrams, tables, spreadsheets, computer programmes, or other non-textual material from other sources.

(d) Self plagiarism which comprises copying verbatim from one's own earlier \spublished work in a journal or conference proceedings without necessary citations.

e) Completing a course requirement by submitting a purchased or downloaded term paper or other resources.

f) Without citation, paraphrasing or modifying an author's words or style.

### (ii) Cheating:

Cheating can take many forms, including, but not limited to:

(a) Exam copying, as well as copying of homework assignments, term papers, theses, or manuscripts.

(b) Permitting or enabling copying, making a report, or taking an examination on behalf of another person.

(c) Using unlawful materials, copying, collaborating without permission, and purchasing or borrowing papers or materials from a variety of sources.



(d) fabricating (falsifying) data and reporting it in theses and publications.

(e)Inventing new sources or citations when none exist

(f) Making changes to previously evaluated work and submitting it for re-evaluation

(g) Signing an assignment, report, research paper, thesis, or attendance sheet in the name of another student.

### (iii) Conflict of Interest:

In a variety of activities such as teaching, research, publication, serving on committees, research funding, and consultancy, a clash of personal or private interests with professional actions can lead to a potential conflict of interest. Actual professional independence, integrity, and commitment must be protected, as well as the appearance of any impropriety resulting from conflicts of interest.

Conflict of interest is not restricted to personal financial gain; it extends to a vast range of professional academic activities including peer reviewing, serving on numerous committees, which may, for example, monitor financing or grant recognition, as well as influencing public policy.

Potential conflicts of interest must be notified in writing to competent authorities for a thoughtful decision to be made on a case-by-case basis, to promote transparency and boost credibility. In the part below dealing with resources, there is also some more information.

4.3 Academic behavior guidelines are presented here to protect against both negligence and purposeful dishonesty:



(a) For experiments and computational tasks, use suitable procedures. Data should be accurately described and compiled.

b) Save primary and secondary data such as original photographs, equipment data readouts, laboratory notebooks, and computer folders with care. Digital alteration of images/photos should be kept to a minimum; the original version should be maintained for subsequent inspection if necessary, and the changes done should be clearly indicated.

c) Ensure that experiments and simulations are robustly reproducible and statistically analyzed. It's critical to be honest about the facts and avoid "cherry picking" (omitting some data pieces to produce an outstanding statistic).

d) Laboratory notes should be kept in bound notebooks with printed page numbers so that they can be checked later for publication or patenting purposes. Each page should have a date on it.

e) Use your own language to write clearly. It is vital to resist the temptation to "copy and paste" from the Internet or other sources for class tasks, manuscripts, and thesis.

f) Cite prior reports, methodologies, computer programmes, and other sources appropriately. It's also a good idea to cite material from your own published work; otherwise, it'll be regarded self-plagiarism.

6.3. Individual and Collective Responsibilities: Responsibilities differ depending on the role played.

a) Student responsibilities:



Department of Computer Science and Engineering

Before submitting a thesis to the department (B.Tech, M Tech), the student is responsible for reviewing the thesis for plagiarism using proper tools. Furthermore, the student must guarantee that he or she is aware of the Institute's academic norms, that the paper has been examined for plagiarism, and that the thesis is original work. Plagiarism cannot always be detected with a web search. If a student notices or learns of any violations of the academic integrity policy, he or she should report the wrongdoing as soon as possible.

b) Faculty responsibilities:

Faculty members should guarantee that suitable methods for experiments, computations, and theoretical developments are followed, and that data is properly recorded and stored for future reference. They should also thoroughly analyze manuscripts and theses. Faculty members must also ensure personal compliance with the broad principles of academic integrity. Faculty members are expected to inform students in their respective courses about the Institute's academic integrity policy, to ensure minimum academic dishonesty, and to respond appropriately and promptly to academic integrity violations.

c) Institutional responsibilities:

A breach of academic integrity is a serious offence that can result in a variety of sanctions for both the individual and the institute. In the event of a student, the first academic infringement will result in a warning and/or a "F" mark in the course. If a repeat offence is deemed serious enough, it may result in expulsion. Faculty should bring any academic infractions to the attention of the department chairperson. When the Director receives reports of scientific misconduct, he



Department of Computer Science and Engineering

or she may create a committee to review the situation and make recommendations for appropriate action on a case-bycase basis.